A Novel Targeted and High-Efficiency Nanosystem for Combinational Therapy for Alzheimer's Disease

Adv Sci (Weinh). 2020 Aug 9;7(19):1902906. doi: 10.1002/advs.201902906. eCollection 2020 Oct.


Alzheimer's disease (AD) remains the most prevalent neurodegenerative disease, and no effective treatment is available yet. Metal-ion-triggered aggregates of amyloid-beta (Aβ) peptide and acetylcholine imbalance are reported to be possible factors in AD pathogenesis. Thus, a combination therapy that can not only inhibit and reduce Aβ aggregation but also simultaneously regulate acetylcholine imbalance that can serve as a potential treatment for AD is needed. Here, clioquinol (metal-ion chelating agent) and donepezil (acetylcholinesterase (AChE) inhibitor) co-encapsulated human serum albumin (HSA) nanoparticles (dcHGT NPs) are designed, which are modified with transcriptional activator protein (TAT) and monosialotetrahexosylganglioside (GM1). The GM1 lipid and TAT peptide endow this drug delivery nanosystem with high brain entry efficiency and long-term retention capabilities through intranasal administration. It is found that dcHGT NPs can significantly inhibit and eliminate Aβ aggregation, relieve acetylcholine-related inflammation in microglial cells, and protect primary neurons from Aβ oligomer-induced neurotoxicity in vitro. The alleviation of Aβ-related inflammation and AChE-inhibited effect further synergistically adjust acetylcholine imbalance. It is further demonstrated that dcHGT NPs reduce Aβ deposition, ameliorate neuron morphological changes, rescue memory deficits, and greatly improve acetylcholine regulation ability in vivo. This multifunctional synergetic nanosystem can be a new candidate to achieve highly efficient combination therapy for AD.

Keywords: Alzheimer's disease; acetylcholine imbalance; amyloid‐beta; combinational therapy; intranasal administration.