Translation-Invariant Kernels for Multivariable Approximation

IEEE Trans Neural Netw Learn Syst. 2021 Nov;32(11):5072-5081. doi: 10.1109/TNNLS.2020.3026720. Epub 2021 Oct 27.

Abstract

Suitability of shallow (one-hidden-layer) networks with translation-invariant kernel units for function approximation and classification tasks is investigated. It is shown that a critical property influencing the capabilities of kernel networks is how the Fourier transforms of kernels converge to zero. The Fourier transforms of kernels suitable for multivariable approximation can have negative values but must be almost everywhere nonzero. In contrast, the Fourier transforms of kernels suitable for maximal margin classification must be everywhere nonnegative but can have large sets where they are equal to zero (e.g., they can be compactly supported). The behavior of the Fourier transforms of multivariable kernels is analyzed using the Hankel transform. The general results are illustrated by examples of both univariable and multivariable kernels (such as Gaussian, Laplace, rectangle, sinc, and cut power kernels).