Biomolecular Condensates and Gene Activation in Development and Disease
- PMID: 33049213
- DOI: 10.1016/j.devcel.2020.09.005
Biomolecular Condensates and Gene Activation in Development and Disease
Abstract
Activating the right gene at the right time and place is essential for development. Emerging evidence suggests that this process is regulated by the mesoscale compartmentalization of the gene-control machinery, RNA polymerase II and its cofactors, within biomolecular condensates. Coupling gene activity to the reversible and dynamic process of condensate formation is proposed to enable the robust and precise changes in gene-regulatory programs during signaling and development. The macromolecular features that enable condensates and the regulatory pathways that control them are dysregulated in disease, highlighting their importance for normal physiology. In this review, we will discuss the role of condensates in gene activation; the multivalent features of protein, RNA, and DNA that enable reversible condensate formation; and how these processes are utilized in normal and disease biology. Understanding the regulation of condensates promises to provide novel insights into how organization of the gene-control machinery regulates development and disease.
Keywords: biomolecular condensates; gene regulation; gene regulation in development and disease; phase separation.
Copyright © 2020 Elsevier Inc. All rights reserved.
Similar articles
-
Function moves biomolecular condensates in phase space.Bioessays. 2022 May;44(5):e2200001. doi: 10.1002/bies.202200001. Epub 2022 Mar 3. Bioessays. 2022. PMID: 35243657 Free PMC article.
-
Phase separation in biology and disease-a symposium report.Ann N Y Acad Sci. 2019 Sep;1452(1):3-11. doi: 10.1111/nyas.14126. Epub 2019 Jun 14. Ann N Y Acad Sci. 2019. PMID: 31199001 Free PMC article.
-
Organization and Function of Non-dynamic Biomolecular Condensates.Trends Biochem Sci. 2018 Feb;43(2):81-94. doi: 10.1016/j.tibs.2017.11.005. Epub 2017 Dec 16. Trends Biochem Sci. 2018. PMID: 29258725 Review.
-
Sequence variations of phase-separating proteins and resources for studying biomolecular condensates.Acta Biochim Biophys Sin (Shanghai). 2023 Jul 18;55(7):1119-1132. doi: 10.3724/abbs.2023131. Acta Biochim Biophys Sin (Shanghai). 2023. PMID: 37464880 Free PMC article. Review.
-
Biomolecular Condensates in the Nucleus.Trends Biochem Sci. 2020 Nov;45(11):961-977. doi: 10.1016/j.tibs.2020.06.007. Epub 2020 Jul 17. Trends Biochem Sci. 2020. PMID: 32684431 Free PMC article. Review.
Cited by
-
RNA helicase DDX5 modulates sorafenib sensitivity in hepatocellular carcinoma via the Wnt/β-catenin-ferroptosis axis.Cell Death Dis. 2023 Nov 30;14(11):786. doi: 10.1038/s41419-023-06302-0. Cell Death Dis. 2023. PMID: 38036507 Free PMC article.
-
Structural properties of the HNF-1A transactivation domain.Front Mol Biosci. 2023 Oct 16;10:1249939. doi: 10.3389/fmolb.2023.1249939. eCollection 2023. Front Mol Biosci. 2023. PMID: 37908230 Free PMC article.
-
Cross-Talk of Cation-π Interactions with Electrostatic and Aromatic Interactions: A Salt-Dependent Trade-off in Biomolecular Condensates.J Phys Chem Lett. 2023 Sep 28;14(38):8460-8469. doi: 10.1021/acs.jpclett.3c01642. Epub 2023 Sep 18. J Phys Chem Lett. 2023. PMID: 37721444 Free PMC article.
-
The mammalian midbody and midbody remnant are assembly sites for RNA and localized translation.Dev Cell. 2023 Oct 9;58(19):1917-1932.e6. doi: 10.1016/j.devcel.2023.07.009. Epub 2023 Aug 7. Dev Cell. 2023. PMID: 37552987
-
A model for organization and regulation of nuclear condensates by gene activity.Nat Commun. 2023 Jul 12;14(1):4152. doi: 10.1038/s41467-023-39878-4. Nat Commun. 2023. PMID: 37438363 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
