Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec;588(7836):83-88.
doi: 10.1038/s41586-020-2855-y. Epub 2020 Oct 13.

Computational planning of the synthesis of complex natural products

Affiliations

Computational planning of the synthesis of complex natural products

Barbara Mikulak-Klucznik et al. Nature. 2020 Dec.

Abstract

Training algorithms to computationally plan multistep organic syntheses has been a challenge for more than 50 years1-7. However, the field has progressed greatly since the development of early programs such as LHASA1,7, for which reaction choices at each step were made by human operators. Multiple software platforms6,8-14 are now capable of completely autonomous planning. But these programs 'think' only one step at a time and have so far been limited to relatively simple targets, the syntheses of which could arguably be designed by human chemists within minutes, without the help of a computer. Furthermore, no algorithm has yet been able to design plausible routes to complex natural products, for which much more far-sighted, multistep planning is necessary15,16 and closely related literature precedents cannot be relied on. Here we demonstrate that such computational synthesis planning is possible, provided that the program's knowledge of organic chemistry and data-based artificial intelligence routines are augmented with causal relationships17,18, allowing it to 'strategize' over multiple synthetic steps. Using a Turing-like test administered to synthesis experts, we show that the routes designed by such a program are largely indistinguishable from those designed by humans. We also successfully validated three computer-designed syntheses of natural products in the laboratory. Taken together, these results indicate that expert-level automated synthetic planning is feasible, pending continued improvements to the reaction knowledge base and further code optimization.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Corey, E. J. & Wipke, W. T. Computer-assisted design of complex organic syntheses. Science 166, 178–192 (1969). - PubMed
    1. Gelernter, H. L. et al. Empirical explorations of SYNCHEM. Science 197, 1041–1049 (1977). - PubMed
    1. Hanessian, S., Franco, J. & Larouche, B. The psychobiological basis of heuristic synthesis planning - man, machine and the Chiron approach. Pure Appl. Chem. 62, 1887–1910 (1990).
    1. Hendrickson, J. B. Systematic synthesis design. 6. Yield analysis and convergency. J. Am. Chem. Soc. 99, 5439–5450 (1977).
    1. Ugi, I. et al. Computer-assisted solution of chemical problems - the historical development and the present state of the art of a new discipline of chemistry. Angew. Chem. Int. Edn Engl. 32, 201–227 (1993).

Publication types

MeSH terms

LinkOut - more resources