Interaction between KDELR2 and HSP47 as a Key Determinant in Osteogenesis Imperfecta Caused by Bi-allelic Variants in KDELR2
- PMID: 33053334
- PMCID: PMC7675035
- DOI: 10.1016/j.ajhg.2020.09.009
Interaction between KDELR2 and HSP47 as a Key Determinant in Osteogenesis Imperfecta Caused by Bi-allelic Variants in KDELR2
Abstract
Osteogenesis imperfecta (OI) is characterized primarily by susceptibility to fractures with or without bone deformation. OI is genetically heterogeneous: over 20 genetic causes are recognized. We identified bi-allelic pathogenic KDELR2 variants as a cause of OI in four families. KDELR2 encodes KDEL endoplasmic reticulum protein retention receptor 2, which recycles ER-resident proteins with a KDEL-like peptide from the cis-Golgi to the ER through COPI retrograde transport. Analysis of patient primary fibroblasts showed intracellular decrease of HSP47 and FKBP65 along with reduced procollagen type I in culture media. Electron microscopy identified an abnormal quality of secreted collagen fibrils with increased amount of HSP47 bound to monomeric and multimeric collagen molecules. Mapping the identified KDELR2 variants onto the crystal structure of G. gallus KDELR2 indicated that these lead to an inactive receptor resulting in impaired KDELR2-mediated Golgi-ER transport. Therefore, in KDELR2-deficient individuals, OI most likely occurs because of the inability of HSP47 to bind KDELR2 and dissociate from collagen type I. Instead, HSP47 remains bound to collagen molecules extracellularly, disrupting fiber formation. This highlights the importance of intracellular recycling of ER-resident molecular chaperones for collagen type I and bone metabolism and a crucial role of HSP47 in the KDELR2-associated pathogenic mechanism leading to OI.
Keywords: HSP47; KDELR2; osteogenesis imperfecta; retrograde Golgi-ER transport.
Copyright © 2020. Published by Elsevier Inc.
Conflict of interest statement
The authors declare no competing interests.
Figures
Similar articles
-
Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta.Am J Hum Genet. 2010 Mar 12;86(3):389-98. doi: 10.1016/j.ajhg.2010.01.034. Epub 2010 Feb 25. Am J Hum Genet. 2010. PMID: 20188343 Free PMC article.
-
Molecular Consequences of the SERPINH1/HSP47 Mutation in the Dachshund Natural Model of Osteogenesis Imperfecta.J Biol Chem. 2015 Jul 17;290(29):17679-17689. doi: 10.1074/jbc.M115.661025. Epub 2015 May 24. J Biol Chem. 2015. PMID: 26004778 Free PMC article.
-
Aberrant binding of mutant HSP47 affects posttranslational modification of type I collagen and leads to osteogenesis imperfecta.PLoS Genet. 2021 Feb 1;17(2):e1009339. doi: 10.1371/journal.pgen.1009339. eCollection 2021 Feb. PLoS Genet. 2021. PMID: 33524049 Free PMC article.
-
Bone collagen: new clues to its mineralization mechanism from recessive osteogenesis imperfecta.Calcif Tissue Int. 2013 Oct;93(4):338-47. doi: 10.1007/s00223-013-9723-9. Epub 2013 Mar 19. Calcif Tissue Int. 2013. PMID: 23508630 Free PMC article. Review.
-
Roles of the endoplasmic reticulum-resident, collagen-specific molecular chaperone Hsp47 in vertebrate cells and human disease.J Biol Chem. 2019 Feb 8;294(6):2133-2141. doi: 10.1074/jbc.TM118.002812. Epub 2018 Dec 12. J Biol Chem. 2019. PMID: 30541925 Free PMC article. Review.
Cited by
-
Bone Quality and Mineralization and Effects of Treatment in Osteogenesis Imperfecta.Calcif Tissue Int. 2024 Sep 4. doi: 10.1007/s00223-024-01263-8. Online ahead of print. Calcif Tissue Int. 2024. PMID: 39231826 Review.
-
HSP47 in human diseases: Navigating pathophysiology, diagnosis and therapy.Clin Transl Med. 2024 Aug;14(8):e1755. doi: 10.1002/ctm2.1755. Clin Transl Med. 2024. PMID: 39135385 Free PMC article. Review.
-
Update on the Genetics of Osteogenesis Imperfecta.Calcif Tissue Int. 2024 Aug 11. doi: 10.1007/s00223-024-01266-5. Online ahead of print. Calcif Tissue Int. 2024. PMID: 39127989 Review.
-
Osteogenesis imperfecta type 10 and the cellular scaffolds underlying common immunological diseases.Genes Immun. 2024 Aug;25(4):265-276. doi: 10.1038/s41435-024-00277-4. Epub 2024 May 29. Genes Immun. 2024. PMID: 38811682 Review.
-
Dissecting Selective Signatures and Candidate Genes in Grandparent Lines Subject to High Selection Pressure for Broiler Production and in a Local Russian Chicken Breed of Ushanka.Genes (Basel). 2024 Apr 22;15(4):524. doi: 10.3390/genes15040524. Genes (Basel). 2024. PMID: 38674458 Free PMC article.
References
-
- Essawi O., Symoens S., Fannana M., Darwish M., Farraj M., Willaert A., Essawi T., Callewaert B., De Paepe A., Malfait F., Coucke P.J. Genetic analysis of osteogenesis imperfecta in the Palestinian population: molecular screening of 49 affected families. Mol. Genet. Genomic Med. 2018;6:15–26. - PMC - PubMed
-
- Kang H., Aryal A C S., Marini J.C. Osteogenesis imperfecta: new genes reveal novel mechanisms in bone dysplasia. Transl. Res. 2017;181:27–48. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Miscellaneous
