A Comprehensive Subcellular Atlas of the Toxoplasma Proteome via hyperLOPIT Provides Spatial Context for Protein Functions
- PMID: 33053376
- PMCID: PMC7670262
- DOI: 10.1016/j.chom.2020.09.011
A Comprehensive Subcellular Atlas of the Toxoplasma Proteome via hyperLOPIT Provides Spatial Context for Protein Functions
Abstract
Apicomplexan parasites cause major human disease and food insecurity. They owe their considerable success to highly specialized cell compartments and structures. These adaptations drive their recognition, nondestructive penetration, and elaborate reengineering of the host's cells to promote their growth, dissemination, and the countering of host defenses. The evolution of unique apicomplexan cellular compartments is concomitant with vast proteomic novelty. Consequently, half of apicomplexan proteins are unique and uncharacterized. Here, we determine the steady-state subcellular location of thousands of proteins simultaneously within the globally prevalent apicomplexan parasite Toxoplasma gondii. This provides unprecedented comprehensive molecular definition of these unicellular eukaryotes and their specialized compartments, and these data reveal the spatial organizations of protein expression and function, adaptation to hosts, and the underlying evolutionary trajectories of these pathogens.
Keywords: apicomplexa; evolution; host-pathogen interaction; invasion; organelle; parasitism; plasmodium; proteomics; subcellular; toxoplasma.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of Interests The authors declare no competing interests.
Figures
Similar articles
-
CRISPR screens identify genes essential for in vivo virulence among proteins of hyperLOPIT-unassigned subcellular localization in Toxoplasma.mBio. 2024 Sep 11;15(9):e0172824. doi: 10.1128/mbio.01728-24. Epub 2024 Jul 31. mBio. 2024. PMID: 39082802 Free PMC article.
-
Host cell proteins modulated upon Toxoplasma infection identified using proteomic approaches: a molecular rationale.Parasitol Res. 2022 Jul;121(7):1853-1865. doi: 10.1007/s00436-022-07541-4. Epub 2022 May 13. Parasitol Res. 2022. PMID: 35552534 Review.
-
Global Lysine Crotonylation and 2-Hydroxyisobutyrylation in Phenotypically Different Toxoplasma gondii Parasites.Mol Cell Proteomics. 2019 Nov;18(11):2207-2224. doi: 10.1074/mcp.RA119.001611. Epub 2019 Sep 5. Mol Cell Proteomics. 2019. PMID: 31488510 Free PMC article.
-
The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites.PLoS Pathog. 2011 Feb 10;7(2):e1001276. doi: 10.1371/journal.ppat.1001276. PLoS Pathog. 2011. PMID: 21347343 Free PMC article.
-
Supply and demand-heme synthesis, salvage and utilization by Apicomplexa.FEBS J. 2021 Jan;288(2):382-404. doi: 10.1111/febs.15445. Epub 2020 Jun 23. FEBS J. 2021. PMID: 32530125 Review.
Cited by
-
Phosphorylation of Toxoplasma gondii Secreted Proteins during Acute and Chronic Stages of Infection.mSphere. 2020 Sep 9;5(5):e00792-20. doi: 10.1128/mSphere.00792-20. mSphere. 2020. PMID: 32907954 Free PMC article.
-
Reduced mitochondria provide an essential function for the cytosolic methionine cycle.Curr Biol. 2022 Dec 5;32(23):5057-5068.e5. doi: 10.1016/j.cub.2022.10.028. Epub 2022 Nov 7. Curr Biol. 2022. PMID: 36347252 Free PMC article.
-
Trematode Proteomics: Recent Advances and Future Directions.Pathogens. 2021 Mar 16;10(3):348. doi: 10.3390/pathogens10030348. Pathogens. 2021. PMID: 33809501 Free PMC article. Review.
-
BCC0 collaborates with IMC32 and IMC43 to form the Toxoplasma gondii essential daughter bud assembly complex.PLoS Pathog. 2024 Jul 18;20(7):e1012411. doi: 10.1371/journal.ppat.1012411. eCollection 2024 Jul. PLoS Pathog. 2024. PMID: 39024411 Free PMC article.
-
The mystery of massive mitochondrial complexes: the apicomplexan respiratory chain.Trends Parasitol. 2022 Dec;38(12):1041-1052. doi: 10.1016/j.pt.2022.09.008. Epub 2022 Oct 24. Trends Parasitol. 2022. PMID: 36302692 Free PMC article. Review.
References
-
- Almagro Armenteros J.J., Tsirigos K.D., Sønderby C.K., Petersen T.N., Winther O., Brunak S., von Heijne G., Nielsen H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019;37:420–423. - PubMed
-
- Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 1995;57:289–300.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
