Special Issue on "New Advances in Cyclic AMP Signalling"-An Editorial Overview

Cells. 2020 Oct 12;9(10):2274. doi: 10.3390/cells9102274.

Abstract

The cyclic nucleotides 3',5'-adenosine monophosphate (cyclic AMP) signalling system underlies the control of many biological events and disease processes in man. Cyclic AMP is synthesised by adenylate cyclase (AC) enzymes in order to activate effector proteins and it is then degraded by phosphodiesterase (PDE) enzymes. Research in recent years has identified a range of cell-type-specific cyclic AMP effector proteins, including protein kinase A (PKA), exchange factor directly activated by cyclic AMP (EPAC), cyclic AMP responsive ion channels (CICs), and the Popeye domain containing (POPDC) proteins, which participate in different signalling mechanisms. In addition, recent advances have revealed new mechanisms of action for cyclic AMP signalling, including new effectors and new levels of compartmentalization into nanodomains, involving AKAP proteins and targeted adenylate cyclase and phosphodiesterase enzymes. This Special Issue contains 21 papers that highlight advances in our current understanding of the biology of compartmentlised cyclic AMP signalling. This ranges from issues of pathogenesis and associated molecular pathways, functional assessment of novel nanodomains, to the development of novel tool molecules and new techniques for imaging cyclic AMP compartmentilisation. This editorial aims to summarise these papers within the wider context of cyclic AMP signalling.

Keywords: AKAP; EPAC; GPCRs; PKA; POPDC; adenylate cyclase; cyclic AMP; cyclic AMP phosphodiesterases.

Publication types

  • Editorial

MeSH terms

  • Adenylyl Cyclases / metabolism
  • Cell Adhesion Molecules / metabolism
  • Cyclic AMP / metabolism*
  • Cyclic AMP / physiology*
  • Cyclic AMP-Dependent Protein Kinases / metabolism
  • Guanine Nucleotide Exchange Factors / metabolism
  • Humans
  • Ion Channels / metabolism
  • Signal Transduction / physiology*

Substances

  • Cell Adhesion Molecules
  • Guanine Nucleotide Exchange Factors
  • Ion Channels
  • Cyclic AMP
  • Cyclic AMP-Dependent Protein Kinases
  • Adenylyl Cyclases