Coastal pollution from the industrial park Quintero bay of central Chile: Effects on abundance, morphology, and development of the kelp Lessonia spicata (Phaeophyceae)

PLoS One. 2020 Oct 15;15(10):e0240581. doi: 10.1371/journal.pone.0240581. eCollection 2020.

Abstract

The industrial park of Quintero Bay (QB) in the central coast of Chile was established in the 1960s, presents high levels of pollution due to the industrial activity, and it is known as one of the five Chilean "sacrifice zones". Lessonia spicata is the most important habitat-forming kelp species in the intertidal along the central and south shores of Chile, and currently there are no morphometric and population studies of L. spicata (or other seaweed species) nor studies about the effects of pollution on its development in QB and neighbouring sites. In this context, the aims of this study were (i) to register the abundance and morphological features of L. spicata populations from Ventanas, Horcón and Cachagua (sites with different pollution histories and located only up to 40 km from the QB); ii) to determine the heavy metals (HMs) concentration in seawater and marine sediments; and (iii) to evaluate in vitro the effects of exposure to seawater from the three sampling sites on spore release and early developmental stages, up to the juvenile sporophyte. Results showed that the chronically exposed Ventanas kelp population had the smallest adult individuals in comparison with the other sites. Ventanas and Horcón registered high HMs concentration in the seawater and marine sediments exceeding the international permissible limits (e.g in seawater Cu 20-859 μg L-1; sediments Cu > 50,000 μg kg-1). Unexpectedly in Cachagua, a site often considered unpolluted, high concentrations of Cu and As were also registered in the seawater (859 and 1,484 μg L-1, respectively) and of As in marine sediments (20,895 μg kg-1). Exposure of gametophytes to the seawater from Ventanas resulted in a developmental delay compared to the other treatments; however, low sporophyte production was determined in all treatments. Our results indicate that QB, more notably Ventanas, induce highly negative effects on individual development, and consequently on seaweed populations, which suggest a long-term negative impact on the community structure of these marine zones. Furthermore, the high concentrations of HMs reported here at Cachagua suggest a recent expansion of pollution along the central coast of Chile, evidencing effects on the marine ecosystem health even on sites far from the pollution source.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bays
  • Chile
  • Environmental Monitoring / statistics & numerical data
  • Kelp / drug effects*
  • Kelp / growth & development
  • Manufacturing and Industrial Facilities*
  • Plant Dispersal / drug effects*
  • Seawater / chemistry*
  • Water Pollutants, Chemical / adverse effects*

Substances

  • Water Pollutants, Chemical

Grants and funding

This work was supported ANID FONDECYT N° 1170881 to LC-P as PI and ANID PIA/BASAL FB0002.