cAMP Response Element Binding Protein 1 (CREB1) Promotes Monounsaturated Fatty Acid Synthesis and Triacylglycerol Accumulation in Goat Mammary Epithelial Cells

Animals (Basel). 2020 Oct 14;10(10):1871. doi: 10.3390/ani10101871.

Abstract

cAMP response element binding protein 1 (CREB1) is a member of the leucine zipper transcription factor family of DNA binding proteins. Although studies in non-ruminants have demonstrated a crucial role of CREB1 in lipid synthesis in liver and adipose tissue, it is unknown if this transcription regulator exerts control of fatty acid synthesis in ruminant mammary cells. To address this question, we first defined the expression dynamics of CREB1 in mammary tissue during lactation. Analysis of CREB1 in mammary tissue revealed higher mRNA abundance in mammary tissue harvested at peak lactation. Overexpression of CREB1 markedly upregulated sterol regulatory element binding transcription factor 1 (SREBP1), fatty acid synthase (FASN), acetyl-coenzyme A carboxylase α (ACACA), elongase of very long chain fatty acids 6 (ELOVL6), lipoprotein lipase (LPL), fatty acid binding protein 3 (FABP3), lipin 1 (LPIN1) and diacylglycerol acyltransferase 1 (DGAT1), but had no effect on glycerol-3-phosphate acyltransferase, mitochondrial (GPAM) or 1-acylglycerol-3-phosphate O-acyltransferase 6 (AGPAT6). In addition, overexpressing CREB1 led to a significant increase in the concentration and desaturation index of C16:1 (palmitoleic acid) and C18:1 (oleic acid), along with increased concentration of triacylglycerol. Taken together, these results highlight an important role of CREB1 in regulating lipid synthesis in goat mammary epithelial cells. Thus, manipulation of CREB1 in vivo might be one approach to improve the quality of goat milk.

Keywords: dairy nutrition; fatty acid composition; goat milk; monounsaturated fatty acids.