Using Computer-based Image Analysis to Improve Quantification of Lung Metastasis in the 4T1 Breast Cancer Model

J Vis Exp. 2020 Oct 2:(164). doi: 10.3791/61805.

Abstract

Breast cancer is a devastating malignancy, accounting for 40,000 female deaths and 30% of new female cancer diagnoses in the United States in 2019 alone. The leading cause of breast cancer related deaths is the metastatic burden. Therefore, preclinical models for breast cancer need to analyze metastatic burden to be clinically relevant. The 4T1 breast cancer model provides a spontaneously-metastasizing, quantifiable mouse model for stage IV human breast cancer. However, most 4T1 protocols quantify the metastatic burden by manually counting stained colonies on tissue culture plates. While this is sufficient for tissues with lower metastatic burden, human error in manual counting causes inconsistent and variable results when plates are confluent and difficult to count. This method offers a computer-based solution to human counting error. Here, we evaluate the protocol using the lung, a highly metastatic tissue in the 4T1 model. Images of methylene blue-stained plates are acquired and uploaded for analysis in Fiji-ImageJ. Fiji-ImageJ then determines the percentage of the selected area of the image that is blue, representing the percentage of the plate with metastatic burden. This computer-based approach offers more consistent and expeditious results than manual counting or histopathological evaluation for highly metastatic tissues. The consistency of Fiji-ImageJ results depends on the quality of the image. Slight variations in results between images can occur, thus it is recommended that multiple images are taken and results averaged. Despite its minimal limitations, this method is an improvement to quantifying metastatic burden in the lung by offering consistent and rapid results.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Female
  • Image Processing, Computer-Assisted*
  • Lung / diagnostic imaging
  • Lung / pathology
  • Lung Neoplasms / diagnostic imaging*
  • Lung Neoplasms / secondary*
  • Mammary Neoplasms, Experimental / diagnostic imaging*
  • Mammary Neoplasms, Experimental / pathology*
  • Mice, Inbred BALB C
  • Software