Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr;44(4):1922-1933.
doi: 10.1109/TPAMI.2020.3032166. Epub 2022 Mar 4.

FCOS: A Simple and Strong Anchor-Free Object Detector

FCOS: A Simple and Strong Anchor-Free Object Detector

Zhi Tian et al. IEEE Trans Pattern Anal Mach Intell. 2022 Apr.

Abstract

In computer vision, object detection is one of most important tasks, which underpins a few instance-level recognition tasks and many downstream applications. Recently one-stage methods have gained much attention over two-stage approaches due to their simpler design and competitive performance. Here we propose a fully convolutional one-stage object detector (FCOS) to solve object detection in a per-pixel prediction fashion, analogue to other dense prediction problems such as semantic segmentation. Almost all state-of-the-art object detectors such as RetinaNet, SSD, YOLOv3, and Faster R-CNN rely on pre-defined anchor boxes. In contrast, our proposed detector FCOS is anchor box free, as well as proposal free. By eliminating the pre-defined set of anchor boxes, FCOS completely avoids the complicated computation related to anchor boxes such as calculating the intersection over union (IoU) scores during training. More importantly, we also avoid all hyper-parameters related to anchor boxes, which are often sensitive to the final detection performance. With the only post-processing non-maximum suppression (NMS), we demonstrate a much simpler and flexible detection framework achieving improved detection accuracy. We hope that the proposed FCOS framework can serve as a simple and strong alternative for many other instance-level tasks. Code is available at: git.io/AdelaiDet.

PubMed Disclaimer

Similar articles

Cited by