NRF2 Activation Promotes Aggressive Lung Cancer and Associates with Poor Clinical Outcomes

Clin Cancer Res. 2021 Feb 1;27(3):877-888. doi: 10.1158/1078-0432.CCR-20-1985. Epub 2020 Oct 19.

Abstract

Purpose: Stabilization of the transcription factor NRF2 through genomic alterations in KEAP1 and NFE2L2 occurs in a quarter of patients with lung adenocarcinoma and a third of patients with lung squamous cell carcinoma. In lung adenocarcinoma, KEAP1 loss often co-occurs with STK11 loss and KRAS-activating alterations. Despite its prevalence, the impact of NRF2 activation on tumor progression and patient outcomes is not fully defined.

Experimental design: We model NRF2 activation, STK11 loss, and KRAS activation in vivo using novel genetically engineered mouse models. Furthermore, we derive a NRF2 activation signature from human non-small cell lung tumors that we use to dissect how these genomic events impact outcomes and immune contexture of participants in the OAK and IMpower131 immunotherapy trials.

Results: Our in vivo data reveal roles for NRF2 activation in (i) promoting rapid-onset, multifocal intrabronchiolar carcinomas, leading to lethal pulmonary dysfunction, and (ii) decreasing elevated redox stress in KRAS-mutant, STK11-null tumors. In patients with nonsquamous tumors, the NRF2 signature is negatively prognostic independently of STK11 loss. Patients with lung squamous cell carcinoma with low NRF2 signature survive longer when receiving anti-PD-L1 treatment.

Conclusions: Our in vivo modeling establishes NRF2 activation as a critical oncogenic driver, cooperating with STK11 loss and KRAS activation to promote aggressive lung adenocarcinoma. In patients, oncogenic events alter the tumor immune contexture, possibly having an impact on treatment responses. Importantly, patients with NRF2-activated nonsquamous or squamous tumors have poor prognosis and show limited response to anti-PD-L1 treatment.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • AMP-Activated Protein Kinase Kinases / genetics
  • AMP-Activated Protein Kinases / genetics
  • Animals
  • B7-H1 Antigen / antagonists & inhibitors
  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism*
  • Carcinoma, Non-Small-Cell Lung / drug therapy
  • Carcinoma, Non-Small-Cell Lung / genetics*
  • Carcinoma, Non-Small-Cell Lung / mortality
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Cell Line, Tumor
  • Disease Models, Animal
  • Drug Resistance, Neoplasm / genetics
  • Gene Expression Profiling
  • Humans
  • Immune Checkpoint Inhibitors / pharmacology
  • Immune Checkpoint Inhibitors / therapeutic use
  • Kaplan-Meier Estimate
  • Kelch-Like ECH-Associated Protein 1 / genetics
  • Lung Neoplasms / drug therapy
  • Lung Neoplasms / genetics*
  • Lung Neoplasms / mortality
  • Lung Neoplasms / pathology
  • Mice
  • NF-E2-Related Factor 2 / genetics
  • NF-E2-Related Factor 2 / metabolism*
  • Prognosis
  • Proto-Oncogene Proteins p21(ras) / genetics

Substances

  • B7-H1 Antigen
  • Biomarkers, Tumor
  • CD274 protein, human
  • Immune Checkpoint Inhibitors
  • KEAP1 protein, human
  • KRAS protein, human
  • Keap1 protein, mouse
  • Kelch-Like ECH-Associated Protein 1
  • NF-E2-Related Factor 2
  • NFE2L2 protein, human
  • Nfe2l2 protein, mouse
  • STK11 protein, human
  • Stk11 protein, mouse
  • AMP-Activated Protein Kinase Kinases
  • AMP-Activated Protein Kinases
  • Proto-Oncogene Proteins p21(ras)