Impact of long-term irrigation with municipal reclaimed wastewater on the uptake and degradation of organic contaminants in lettuce and leek

Sci Total Environ. 2021 Apr 15;765:142742. doi: 10.1016/j.scitotenv.2020.142742. Epub 2020 Oct 3.


A two years drip irrigation of lettuce and leek crops with treated municipal wastewater without and with spiking with fourteen wastewater relevant contaminants at 10 μg/L concentration level was conducted under greenhouse cultivation conditions to investigate their potential accumulation in soil and leaves and to assess human health related risks. Lettuce and leek crops were selected as a worse-case scenario since leafy green vegetable has a high potential for organic contaminants uptake. The results revealed limited accumulation of contaminants in soil and plant leaves, their concentration levels being in the range of 1-30 ng/g and 1-660 ng/g range in soil and leaves, respectively. This was likely related to abiotic and biotic transformation or simply binding processes in soil, which limited contaminants plant uptake. This assumption was underpinned by studies of the enantiomeric fractionation of chiral compounds (e.g. climbazole and metoprolol) in soil as pieces of evidence of biodegradation and by the identification of transformation products or metabolites in leaves by means of liquid chromatography - high resolution - mass spectrometry using a suspect screening workflow. The high bioconcentration factors were not limited to compounds with intermediate Dow (100 to 1000) such as carbamazepine but also observed for hydrophilic compounds such as clarithromycin, hydrochlorothiazide and the food additives acesulfame and sucralose. This result assumed that accumulation was not only driven by passive processes (e.g. lipoidal diffusion through lipid bilayer cell membranes or Casparian strip) but might be supported by carrier-mediated transporters. As a whole, this study confirmed earlier reports on the a de minimis human health risk related to the consumption of raw leafy green vegetable irrigated with domestic TWW containing organic contaminants residues.

Keywords: Pharmaceuticals; Plant uptake; Reclaimed wastewater irrigation; Risks; Soil accumulation.

MeSH terms

  • Agricultural Irrigation
  • Crops, Agricultural
  • Humans
  • Lettuce*
  • Onions
  • Soil
  • Wastewater*


  • Soil
  • Waste Water