Approximately 1%-2% of children with Down syndrome (DS) develop acute myeloid leukemia (AML) prior to age 5 years. AML in DS children (ML-DS) is characterized by the pathognomonic mutation in the gene encoding the essential hematopoietic transcription factor GATA1, resulting in N-terminally truncated short form of GATA1 (GATA1s). Trisomy 21 and GATA1s together are sufficient to induce transient abnormal myelopoiesis (TAM) exhibiting pre-leukemic characteristics. Approximately 30% of these cases progress into ML-DS by acquisition of additional somatic mutations. We employed disease modeling in vitro by the use of customizable induced pluripotent stem cells (iPSCs) to generate a TAM model. Isogenic iPSC lines derived from the fibroblasts of DS individuals with trisomy 21 and with disomy 21 were used. The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 system was used to introduce GATA1 mutation in disomic and trisomic iPSC lines. The hematopoietic stem and progenitor cells (HSPCs) derived from GATA1 mutant iPSC lines expressed GATA1s. The expression of GATA1s concomitant with loss of full-length GATA1 reduced the erythroid population, whereas it augmented megakaryoid and myeloid populations, characteristic of TAM. In conclusion, we have developed a model system representing TAM, which can be used for modeling ML-DS by stepwise introduction of additional mutations.
Keywords: CRISPR/Cas9; Down syndrome; GATA1s; iPSC; leukemia.
© 2020 The Author(s).