Xanthene based hybrid analogues to inhibit protease of novel corona Virus: Molecular docking and ADMET studies

Comput Toxicol. 2020 Nov;16:100140. doi: 10.1016/j.comtox.2020.100140. Epub 2020 Oct 21.


In December 2019, the SARS-CoV-2 was reported for the first time and the infected person is reported at Wuhan, China. Till date, about twenty four million people around the world are infected due to the SARS-CoV-2. The structure of this corona virus is new and different from other corona viruses. The genome has a positive sense single RNA strand and it is responsible for the encoding of the protein. The protease of the SARS-CoV-2 is responsible for the cleavage and therefore, it should be targeted to develop medicine. Till date, no medicine or vaccine is in the market to cure from the infection. Researchers around the world are working on the development of efficacious and safe vaccine/ drug to cure from the infection. Therefore, the authors used previously synthesized compounds, xanthene-triazole-chloroquinoline/ xanthene-chloroquinoline hybrids for the inhibition of the main protease of the SARS-CoV-2 via using computational tools, molecular docking and ADMET properties. COMD AP3 was found to be the best candidate from the library of the designed molecules. It has acceptable solubility along with the distribution and metabolism property. ADMET results corroborate the docking result towards the potency of COMP AP3.

Keywords: ADMET; Docking; Hybrids; Inhibition; Main protease of SARS-CoV-2.