Uncovering the basis of protein-protein interaction specificity with a combinatorially complete library
- PMID: 33107822
- PMCID: PMC7669267
- DOI: 10.7554/eLife.60924
Uncovering the basis of protein-protein interaction specificity with a combinatorially complete library
Abstract
Protein-protein interaction specificity is often encoded at the primary sequence level. However, the contributions of individual residues to specificity are usually poorly understood and often obscured by mutational robustness, sequence degeneracy, and epistasis. Using bacterial toxin-antitoxin systems as a model, we screened a combinatorially complete library of antitoxin variants at three key positions against two toxins. This library enabled us to measure the effect of individual substitutions on specificity in hundreds of genetic backgrounds. These distributions allow inferences about the general nature of interface residues in promoting specificity. We find that positive and negative contributions to specificity are neither inherently coupled nor mutually exclusive. Further, a wild-type antitoxin appears optimized for specificity as no substitutions improve discrimination between cognate and non-cognate partners. By comparing crystal structures of paralogous complexes, we provide a rationale for our observations. Collectively, this work provides a generalizable approach to understanding the logic of molecular recognition.
Keywords: biochemistry; chemical biology; deep mutational scanning; molecular biophysics; none; protein-protein interaction; specificity; structural biology.
© 2020, Lite et al.
Conflict of interest statement
TL, RG, IN, ML, MG No competing interests declared, ML Reviewing editor, eLife
Figures
Similar articles
-
Evolving new protein-protein interaction specificity through promiscuous intermediates.Cell. 2015 Oct 22;163(3):594-606. doi: 10.1016/j.cell.2015.09.055. Epub 2015 Oct 17. Cell. 2015. PMID: 26478181 Free PMC article.
-
Structural Determinants for Antitoxin Identity and Insulation of Cross Talk between Homologous Toxin-Antitoxin Systems.J Bacteriol. 2016 Nov 18;198(24):3287-3295. doi: 10.1128/JB.00529-16. Print 2016 Dec 15. J Bacteriol. 2016. PMID: 27672196 Free PMC article.
-
Higher-Order Structure in Bacterial VapBC Toxin-Antitoxin Complexes.Subcell Biochem. 2017;83:381-412. doi: 10.1007/978-3-319-46503-6_14. Subcell Biochem. 2017. PMID: 28271484 Review.
-
Structure-function analysis of VapB4 antitoxin identifies critical features of a minimal VapC4 toxin-binding module.J Bacteriol. 2015 Apr;197(7):1197-207. doi: 10.1128/JB.02508-14. Epub 2015 Jan 26. J Bacteriol. 2015. PMID: 25622615 Free PMC article.
-
Substrate specificity of bacterial endoribonuclease toxins.BMB Rep. 2020 Dec;53(12):611-621. doi: 10.5483/BMBRep.2020.53.12.203. BMB Rep. 2020. PMID: 33148377 Free PMC article. Review.
Cited by
-
Co-evolution of interacting proteins through non-contacting and non-specific mutations.Nat Ecol Evol. 2022 May;6(5):590-603. doi: 10.1038/s41559-022-01688-0. Epub 2022 Mar 31. Nat Ecol Evol. 2022. PMID: 35361892 Free PMC article.
-
Robust genetic codes enhance protein evolvability.PLoS Biol. 2024 May 16;22(5):e3002594. doi: 10.1371/journal.pbio.3002594. eCollection 2024 May. PLoS Biol. 2024. PMID: 38754362 Free PMC article.
-
Frustration can Limit the Adaptation of Promiscuous Enzymes Through Gene Duplication and Specialisation.J Mol Evol. 2024 Apr;92(2):104-120. doi: 10.1007/s00239-024-10161-4. Epub 2024 Mar 12. J Mol Evol. 2024. PMID: 38470504 Free PMC article.
-
Designing Cyclic-Constrained Peptides to Inhibit Human Phosphoglycerate Dehydrogenase.Molecules. 2023 Sep 4;28(17):6430. doi: 10.3390/molecules28176430. Molecules. 2023. PMID: 37687259 Free PMC article.
-
Evolvability-enhancing mutations in the fitness landscapes of an RNA and a protein.Nat Commun. 2023 Jun 19;14(1):3624. doi: 10.1038/s41467-023-39321-8. Nat Commun. 2023. PMID: 37336901 Free PMC article.
References
-
- Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D Biological Crystallography. 2010;66:213–221. doi: 10.1107/S0907444909052925. - DOI - PMC - PubMed
-
- Barbas CF, Hu D, Dunlop N, Sawyer L, Cababa D, Hendry RM, Nara PL, Burton DR. In vitro evolution of a neutralizing human antibody to human immunodeficiency virus type 1 to enhance affinity and broaden strain cross-reactivity. PNAS. 1994;91:3809–3813. doi: 10.1073/pnas.91.9.3809. - DOI - PMC - PubMed
-
- Brasch J, Katsamba PS, Harrison OJ, Ahlsén G, Troyanovsky RB, Indra I, Kaczynska A, Kaeser B, Troyanovsky S, Honig B, Shapiro L. Homophilic and heterophilic interactions of type II cadherins identify specificity groups underlying Cell-Adhesive behavior. Cell Reports. 2018;23:1840–1852. doi: 10.1016/j.celrep.2018.04.012. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Supplementary concepts
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
