ANGPTL2-containing small extracellular vesicles from vascular endothelial cells accelerate leukemia progression

J Clin Invest. 2020 Oct 27;138986. doi: 10.1172/JCI138986. Online ahead of print.


Small extracellular vesicles (SEVs) are functional messengers of certain cellular niches to permit non-contact cell communications. Whether niche-specific SEVs fulfill this role in cancer is unclear. Here, we used seven cell-type specific mouse Cre lines to conditionally knockout Vps33b in Cdh5+ or Tie2+ endothelial cells (ECs), Lepr+ bone marrow perivascular cells, Osx+ osteo-progenitor cells (OPCs), Pf4+ megakaryocytes and Tcf21+ spleen stromal cells. We then examined the effects of reduced SEV secretion on progression of MLL-AF9 induced acute myeloid leukemia (AML) as well as normal hematopoiesis. Blocking SEV secretion from ECs, but not perivascular cells, megakaryocytes or spleen stromal cells, markedly delayed the leukemia progression. Notably, reducing SEV production from ECs had no effect on normal hematopoiesis. Protein analysis showed that EC-derived SEVs contained a high level of ANGPTL2, which accelerated leukemia progression via binding to LILRB2 receptor. Moreover, ANGPTL2-SEVs released from ECs were governed by VPS33B. Importantly, ANGPTL2-SEVs were also required for primary human AML cell maintenance. These findings demonstrate a role of niche-specific SEVs in cancer development and suggest that targeting ANGPTL2-SEVs from ECs might be a potential strategy to interfere certain types of AML.

Keywords: Hematology; Leukemias; Stem cells.