Automated Segmentation of Retinal Fluid Volumes From Structural and Angiographic Optical Coherence Tomography Using Deep Learning

Transl Vis Sci Technol. 2020 Oct 8;9(2):54. doi: 10.1167/tvst.9.2.54. eCollection 2020 Oct.

Abstract

Purpose: We proposed a deep convolutional neural network (CNN), named Retinal Fluid Segmentation Network (ReF-Net), to segment retinal fluid in diabetic macular edema (DME) in optical coherence tomography (OCT) volumes.

Methods: The 3- × 3-mm OCT scans were acquired on one eye by a 70-kHz OCT commercial AngioVue system (RTVue-XR; Optovue, Inc., Fremont, CA, USA) from 51 participants in a clinical diabetic retinopathy (DR) study (45 with retinal edema and six healthy controls, age 61.3 ± 10.1 (mean ± SD), 33% female, and all DR cases were diagnosed as severe NPDR or PDR). A CNN with U-Net-like architecture was constructed to detect and segment the retinal fluid. Cross-sectional OCT and angiography (OCTA) scans were used for training and testing ReF-Net. The effect of including OCTA data for retinal fluid segmentation was investigated in this study. Volumetric retinal fluid can be constructed using the output of ReF-Net. Area-under-receiver-operating-characteristic-curve, intersection-over-union (IoU), and F1-score were calculated to evaluate the performance of ReF-Net.

Results: ReF-Net shows high accuracy (F1 = 0.864 ± 0.084) in retinal fluid segmentation. The performance can be further improved (F1 = 0.892 ± 0.038) by including information from both OCTA and structural OCT. ReF-Net also shows strong robustness to shadow artifacts. Volumetric retinal fluid can provide more comprehensive information than the two-dimensional (2D) area, whether cross-sectional or en face projections.

Conclusions: A deep-learning-based method can accurately segment retinal fluid volumetrically on OCT/OCTA scans with strong robustness to shadow artifacts. OCTA data can improve retinal fluid segmentation. Volumetric representations of retinal fluid are superior to 2D projections.

Translational relevance: Using a deep learning method to segment retinal fluid volumetrically has the potential to improve the diagnostic accuracy of diabetic macular edema by OCT systems.

Keywords: OCT/OCTA; deep learning; retinal fluid volume; segmentation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Cross-Sectional Studies
  • Deep Learning*
  • Diabetic Retinopathy* / diagnostic imaging
  • Female
  • Humans
  • Macular Edema* / diagnostic imaging
  • Male
  • Middle Aged
  • Tomography, Optical Coherence