Synergizing sunitinib and radiofrequency ablation to treat hepatocellular cancer by triggering the antitumor immune response

J Immunother Cancer. 2020 Oct;8(2):e001038. doi: 10.1136/jitc-2020-001038.

Abstract

Background: Minimally invasive radiofrequency ablation (RFA) is used as a first-line treatment option for hepatocellular cancer (HCC) with the weaknesses of incomplete ablation, tumor recurrence, and inferior outcomes. To overcome this limitation, we proposed to develop sunitinib-RFA integrated therapy with a potential of activating anti-HCC immune response.

Methods: Using our unique murine model, we developed a novel RFA platform with a modified human cardiac RF generator. Therapeutic efficacy of sunitinib-RFA combined treatment in HCC was tested in this platform. Tumor progression was monitored by MRI; tumor necrosis and apoptosis were detected by H&E and terminal deoxynucleotidyl transferase dUTP nick end labeling; immune reaction was defined by flow cytometry; and signaling molecules were examined with real-time PCR (qPCR), western blot, and immunohistochemical staining.

Results: A significantly reduced tumor growth and extended lift span were observed in the mice receiving combined treatment with RFA and sunitinib. This combined treatment significantly increased the frequency of CD8+ T cell, memory CD8+ T cell, and dendritic cells (DCs); decreased the frequency of regulatory T cells; and activated tumor-specific antigen (TSA) immune response in tumor microenvironment. We found that RFA caused PD-1 upregulation in tumor-infiltrated T cells by boosting hepatocyte growth factor (HGF) expression, which was suppressed by sunitinib treatment. We have also demonstrated that sunitinib suppressed VEGF's effect in enhancing PD-L1 expression in DCs and attenuated heat-sink effect. The results indicate that RFA induced tumor destruction and release of in situ TSAs which can activate a tumoricidal immune response in sunitinib-treated mice, significantly improving anti-HCC therapeutic efficacy.

Conclusions: Sunitinib enables RFA-released in situ TSA to ignite an effective anti-tumor immune response by suppressing HGF and VEGF signaling pathways. Sunitinib-RFA as a synergistic therapeutic approach significantly suppresses HCC growth.

Keywords: combined modality therapy; immune tolerance; immunomodulation; liver neoplasms; lymphocytes; tumor-infiltrating.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Carcinoma, Hepatocellular / radiotherapy*
  • Dendritic Cells / metabolism*
  • Disease Models, Animal
  • Humans
  • Immunity / immunology*
  • Liver Neoplasms / radiotherapy*
  • Mice
  • Radiofrequency Ablation / methods*
  • Sunitinib / pharmacology
  • Sunitinib / therapeutic use*

Substances

  • Sunitinib