Predicting stroke severity with a 3-min recording from the Muse portable EEG system for rapid diagnosis of stroke

Sci Rep. 2020 Oct 28;10(1):18465. doi: 10.1038/s41598-020-75379-w.

Abstract

In this study, we demonstrated the use of low-cost portable electroencephalography (EEG) as a method for prehospital stroke diagnosis. We used a portable EEG system to record data from 25 participants, 16 had acute ischemic stroke events, and compared the results to age-matched controls that included stroke mimics. Delta/alpha ratio (DAR), (delta + theta)/(alpha + beta) ratio (DBATR) and pairwise-derived Brain Symmetry Index (pdBSI) were investigated, as well as head movement using the on-board accelerometer and gyroscope. We then used machine learning to distinguish between different subgroups. DAR and DBATR increased in ischemic stroke patients with increasing stroke severity (p = 0.0021, partial η2 = 0.293; p = 0.01, partial η2 = 0.234). Also, pdBSI decreased in low frequencies and increased in high frequencies in patients who had a stroke (p = 0.036, partial η2 = 0.177). Using classification trees, we were able to distinguish moderate to severe stroke patients and from minor stroke and controls, with a 63% sensitivity, 86% specificity and accuracy of 76%. There are significant differences in DAR, DBATR, and pdBSI between patients with ischemic stroke when compared to controls, and these effects scale with severity. We have shown the utility of a low-cost portable EEG system to aid in patient triage and diagnosis as an early detection tool.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Brain / physiopathology*
  • Brain Ischemia / physiopathology*
  • Electroencephalography / instrumentation*
  • Female
  • Humans
  • Male
  • Middle Aged
  • Prospective Studies
  • Severity of Illness Index*
  • Stroke / physiopathology*

Grants and funding