Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 25;68(47):13950-13959.
doi: 10.1021/acs.jafc.0c01471. Epub 2020 Nov 3.

Characteristics of Grain Physicochemical Properties and the Starch Structure in Rice Carrying a Mutated ALK/SSIIa Gene

Affiliations

Characteristics of Grain Physicochemical Properties and the Starch Structure in Rice Carrying a Mutated ALK/SSIIa Gene

Changquan Zhang et al. J Agric Food Chem. .

Abstract

The gelatinization temperature (GT) of endosperm starch influences rice eating and the cooking quality (ECQ). ALK encoding soluble starch synthase IIa (SSIIa) is the major gene determining grain GT in rice. Herein, we identified a spontaneous ALK mutant named ALKd, which resulted from a G/T single-nucleotide polymorphism (SNP) in exon 1 of the ALKc allele from the high-GT indica rice cultivar. Compared with grains from the ALKc near-isogenic line (NIL), NIL(ALKd) grains exhibited a high GT (2.3 °C) and improved retrogradation properties. The NIL(ALKd) grain starch contained an increased proportion of amylopectin intermediate chains (DP 13-24) at the expense of short chains (DP < 12), resulting in enhancements in both the crystallinity and the lamellar peak intensity compared with low-GT rice grains. Moreover, both NIL(ALKd) and NIL(ALKc) grains also featured a significantly lower apparent amylose content (AAC), harder gel consistency (GC), higher pasting curve, and poorer taste values in comparison to Nip(ALKa) grains. Taken together, this work provides novel insights underlying the allelic variation of the ALK gene in rice.

Keywords: ALK gene; Oryza sativa L.; amylopectin; crystallinity; gelatinization temperature; starch fine structure.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources