The environmental fate of phenanthrene in paddy field system and microbial responses in rhizosphere interface: Effect of water-saving patterns

Chemosphere. 2021 Apr:269:128774. doi: 10.1016/j.chemosphere.2020.128774. Epub 2020 Oct 27.

Abstract

The effects of water-saving patterns (Semi-dry water-saving, B; Shallow-wet control irrigation, Q; Traditional flooding irrigation, C; and Moistening irrigation, S) on the environmental fate of phenanthrene (Phe) and microbial responses in rhizosphere were investigated in paddy field system. Results showed the rice grain in Q treatment was more high production and safety with less Phe residue (up to 18%-49%) than other treatments, and the residual Phe in soil declined in the order: C (14.17%) > S (13.36%) > B (5.86%)>Q (2.70%), which proves the existence of optimal water conditions for PAHs degradation and rhizosphere effect during rice cultivation. Laccase (LAC) and dioxygenase (C23O) played important roles in Phe degradation, which were significantly positively correlated with Phe dissipation rate in soil (p < 0.01). Moreover, their activities in Q treatment, rhizosphere and subsoil were higher than those in C treatment, non-rhizoshere and upper layer soil. The introduction of Phe and rice into paddy field system decreased the microorganism diversity, and promoted the activities of enzymes and some PAHs degrading bacteria, such as Delftia, Serratia, Enterobacter, Pseudomonas, norank_f_Rhodospirillaceae, norank_f_Nitrosomonadaceae and so on. According to the cluster analysis, redundancy analysis and correlation analysis between bacterial community composition and environmental factors, water-saving patterns markedly impacted the relative abundance and bacterial community structure by the regulating and controlling on environmental conditions of paddy field. The dioxygenase activity, laccase activity, oxidation-reduction potential and conductivity were the main affecting factors on Phe dissipation during growth stage of rice.

Keywords: Different irrigation patterns; Dissipation; Enzyme activity; Microorganism composition; PAHs; Water saving.

MeSH terms

  • Oryza*
  • Phenanthrenes*
  • Rhizosphere
  • Soil
  • Soil Microbiology
  • Water

Substances

  • Phenanthrenes
  • Soil
  • Water