Hepatitis B Virus DNA Polymerase Displays an Anti-Apoptotic Effect by Interacting with Elongation Factor-1 Alpha-2 in Hepatoma Cells

J Microbiol Biotechnol. 2021 Jan 28;31(1):16-24. doi: 10.4014/jmb.2002.02039.

Abstract

Hepatitis B virus (HBV) genome P-encoded protein HBV DNA polymerase (Pol) has long been known as a reverse transcriptase during HBV replication. In this study, we investigated the impact of HBV Pol on host cellular processes, mainly apoptosis, and the underlying mechanisms. We showed a marked reduction in apoptotic rates in the HBV Pol-expressed HepG2 cells compared to controls. Moreover, a series of assays, i.e., yeast two-hybrid, GST pull-down, co-immunoprecipitation, and confocal laser scanning microscopy, identified the host factor eEF1A2 to be associated with HBV Pol. Furthermore, knockdown of eEF1A2 gene by siRNA abrogated the HBV Pol-mediated anti-apoptotic effect with apoptosis induced by endoplasmatic reticulum (ER) stress-inducer thapsigargin (TG), thus suggesting that the host factor eEF1A2 is essential for HBV Pol's anti-apoptosis properties. Our findings have revealed a novel role for HBV Pol in its modulation of apoptosis through integrating with eEF1A2.

Keywords: HBV DNA polymerase; Hepatitis B virus; apoptosis; chronic hepatitis B; eEF1A2.