TRAIL receptor agonists convert the response of breast cancer cells to ONC201 from anti-proliferative to apoptotic

Oncotarget. 2020 Oct 20;11(42):3753-3769. doi: 10.18632/oncotarget.27773.

Abstract

ONC201 was initially identified as an inducer of cell death through the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway. The compound is currently being tested in patients with hematological malignancies and solid tumors, including those of the breast. We investigated strategies to convert the response of breast cancers to ONC201 from anti-proliferative to apoptotic. ONC201 treatment upregulates TRAIL and primes TRAIL-resistant non-triple negative breast cancer (TNBC) cells to undergo cell death through the extrinsic pathway. Remarkably, the addition of exogenous recombinant human TRAIL (rhTRAIL) converts the response of TRAIL-resistant non-TNBC cells to ONC201 from anti-proliferative to apoptotic in a death receptor 5 (DR5)-dependent manner in vitro. Importantly, normal fibroblasts do not undergo apoptosis following rhTRAIL plus ONC201. In vivo, MDA-MB-361 tumor growth rate is significantly reduced following treatment with a combination of ONC201 and rhTRAIL as compared to control tumors. Natural killer (NK) cells which use TRAIL to kill DR5-expressing cancer cells, exhibit greater cytotoxicity against ONC201-treated breast cancer cells compared to controls. rhTRAIL also converts the response of cells from other tumor types to ONC201 from anti-proliferative to apoptotic. A monoclonal DR5-agonistic antibody converts the response of non-TNBC cells to ONC201 from anti-proliferative to apoptotic. Our findings describe a novel therapeutic strategy that potently converts the response of a cancer cell to ONC201 from anti-proliferative to apoptotic. This approach may be clinically relevant and has potential to induce tumor regression of patient tumors with relative resistance to ONC201 monotherapy.

Keywords: ONC201; TRAIL; apoptosis; breast cancer; death receptors.