The effects of sequential and continuous chelation on dentin

Dent Mater. 2020 Dec;36(12):1655-1665. doi: 10.1016/j.dental.2020.10.010. Epub 2020 Nov 5.

Abstract

Objective: Proteolytic and demineralizing agents have a profound influence on the dentin ultrastructure, which plays a key role in the mechanical integrity of the tooth and integrity of dentin-biomaterial interfaces. In-depth characterization of dentin treated with a novel root canal irrigation protocol comprising sodium hypochlorite (NaOCl) and etidronate (HEDP) is lacking. This study comprehensively characterized and compared the effects of the continuous chelation (NaOCl/HEDP) and sequential chelation (NaOCl/EDTA) protocols on dentin.

Methods: Dentin blocks, dentin powder and root canals of mandibular premolars were distributed into Group 1, Saline (control); Group 2, NaOCl/EDTA; and Group 3, NaOCl/HEDP. Ultrastructural characteristics of the treated dentin were investigated using electron microscopy and light microscopy, while the surface roughness was analyzed using atomic force microscopy. Chemical compositional changes were characterized using Fourier transform infrared spectroscopy (FTIR) and energy-dispersive-X-ray spectroscopy (EDS), while collagen degradation was determined using ninhydrin assay. Data were statistically analyzed using multiple-factor one-way ANOVA and Tukey HSD tests (P = 0.05).

Results: NaOCl/HEDP resulted in partially degraded, yet mineralized collagen fibers, with minimal alteration to the subsurface matrix. Conversely, NaOCl/EDTA dissolved the hydroxyapaptite encapsulation, exposing collagen fibre bundles. There was no significant difference in the surface roughness between the two protocols (P > 0.05). NaOCl/HEDP resulted in homogenous distribution of organic and inorganic components on the treated surface.

Significance: This study highlighted that continuous chelation (NaOCl/HEDP) resulted in a frail surface collagen layer while sequential chelation (NaOCl/EDTA) exposed bare collagen fibres. These surface and sub-surface effects potentially contribute to structural failures of dentin and/or dentin-biomaterial interfacial failures.

Keywords: Collagen; Dentin; Ethylene diamine tetraacetic acid; Etidronic acid; Sodium hypochlorite.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Dental Pulp Cavity
  • Dentin*
  • Edetic Acid
  • Root Canal Irrigants*
  • Root Canal Therapy
  • Sodium Hypochlorite

Substances

  • Root Canal Irrigants
  • Edetic Acid
  • Sodium Hypochlorite