Abnormal regulation of renal kallikrein in experimental diabetes. Effects of insulin on prokallikrein synthesis and activation

J Clin Invest. 1987 Dec;80(6):1651-9. doi: 10.1172/JCI113254.

Abstract

The effects of streptozotocin (STZ) diabetes and insulin on regulation of renal kallikrein were studied in the rat. 1 and 2 wk after STZ injection, diabetic rats had reduced renal levels and urinary excretion of active kallikrein. Tissue and urinary prokallikrein levels were unchanged, but the rate of renal prokallikrein synthesis relative to total protein synthesis was reduced 30-45% in diabetic rats. Treatment of diabetic rats with insulin prevented or reversed the fall in tissue level and excretion rate of active kallikrein and normalized prokallikrein synthesis rate. To further examine insulin's effects, nondiabetic rats were treated with escalating insulin doses to produce hyperinsulinemia. In these rats, renal active kallikrein increased. Although renal prokallikrein was not increased significantly by hyperinsulinemia, its synthesis was increased. As this was accompanied by proportionally increased total protein synthesis, relative kallikrein synthesis rate was not changed. Excretion of active kallikrein was unchanged, but prokallikrein excretion was markedly reduced. Therefore, increased tissue active kallikrein seen with hyperinsulinemia can be explained not only by increased synthesis but also by retention and increased activation of renal prokallikrein. These studies show that STZ diabetes produces an impairment in renal kallikrein synthesis and suggest that this disease state also impairs renal prokallikrein activation. The findings also suggest that insulin modulates renal kallikrein production, activation, and excretion.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Diabetes Mellitus, Experimental / metabolism*
  • Enzyme Activation / drug effects
  • Enzyme Precursors / biosynthesis*
  • Insulin / therapeutic use*
  • Kallikreins / biosynthesis*
  • Kallikreins / metabolism*
  • Kidney / metabolism*
  • Male
  • Rats

Substances

  • Enzyme Precursors
  • Insulin
  • Kallikreins
  • prokallikrein, tissue