Assembly of the algal CO2-fixing organelle, the pyrenoid, is guided by a Rubisco-binding motif
- PMID: 33177094
- PMCID: PMC7673724
- DOI: 10.1126/sciadv.abd2408
Assembly of the algal CO2-fixing organelle, the pyrenoid, is guided by a Rubisco-binding motif
Abstract
Approximately one-third of the Earth's photosynthetic CO2 assimilation occurs in a pyrenoid, an organelle containing the CO2-fixing enzyme Rubisco. How constituent proteins are recruited to the pyrenoid and how the organelle's subcompartments-membrane tubules, a surrounding phase-separated Rubisco matrix, and a peripheral starch sheath-are held together is unknown. Using the model alga Chlamydomonas reinhardtii, we found that pyrenoid proteins share a sequence motif. We show that the motif is necessary and sufficient to target proteins to the pyrenoid and that the motif binds to Rubisco, suggesting a mechanism for targeting. The presence of the Rubisco-binding motif on proteins that localize to the tubules and on proteins that localize to the matrix-starch sheath interface suggests that the motif holds the pyrenoid's three subcompartments together. Our findings advance our understanding of pyrenoid biogenesis and illustrate how a single protein motif can underlie the architecture of a complex multilayered phase-separated organelle.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Figures
Similar articles
-
A Rubisco-binding protein is required for normal pyrenoid number and starch sheath morphology in Chlamydomonas reinhardtii.Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18445-18454. doi: 10.1073/pnas.1904587116. Epub 2019 Aug 27. Proc Natl Acad Sci U S A. 2019. PMID: 31455733 Free PMC article.
-
The structural basis of Rubisco phase separation in the pyrenoid.Nat Plants. 2020 Dec;6(12):1480-1490. doi: 10.1038/s41477-020-00811-y. Epub 2020 Nov 23. Nat Plants. 2020. PMID: 33230314 Free PMC article.
-
A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle.Proc Natl Acad Sci U S A. 2016 May 24;113(21):5958-63. doi: 10.1073/pnas.1522866113. Epub 2016 May 10. Proc Natl Acad Sci U S A. 2016. PMID: 27166422 Free PMC article.
-
Pyrenoid: Organelle with efficient CO2-Concentrating mechanism in algae.J Plant Physiol. 2023 Aug;287:154044. doi: 10.1016/j.jplph.2023.154044. Epub 2023 Jun 25. J Plant Physiol. 2023. PMID: 37392525 Review.
-
Pyrenoids: CO2-fixing phase separated liquid organelles.Biochim Biophys Acta Mol Cell Res. 2021 Apr;1868(5):118949. doi: 10.1016/j.bbamcr.2021.118949. Epub 2021 Jan 7. Biochim Biophys Acta Mol Cell Res. 2021. PMID: 33421532 Review.
Cited by
-
Pyrenoid proteomics reveals independent evolution of the CO2-concentrating organelle in chlorarachniophytes.Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2318542121. doi: 10.1073/pnas.2318542121. Epub 2024 Feb 26. Proc Natl Acad Sci U S A. 2024. PMID: 38408230
-
CAH3 from Chlamydomonas reinhardtii: Unique Carbonic Anhydrase of the Thylakoid Lumen.Cells. 2024 Jan 5;13(2):109. doi: 10.3390/cells13020109. Cells. 2024. PMID: 38247801 Free PMC article. Review.
-
SAGA1 and SAGA2 promote starch formation around proto-pyrenoids in Arabidopsis chloroplasts.Proc Natl Acad Sci U S A. 2024 Jan 23;121(4):e2311013121. doi: 10.1073/pnas.2311013121. Epub 2024 Jan 19. Proc Natl Acad Sci U S A. 2024. PMID: 38241434 Free PMC article.
-
Chloroplast Methyltransferase Homolog RMT2 is Involved in Photosystem I Biogenesis.bioRxiv [Preprint]. 2023 Dec 22:2023.12.21.572672. doi: 10.1101/2023.12.21.572672. bioRxiv. 2023. PMID: 38187728 Free PMC article. Preprint.
-
The role of BST4 in the pyrenoid of Chlamydomonas reinhardtii.bioRxiv [Preprint]. 2023 Nov 17:2023.06.15.545204. doi: 10.1101/2023.06.15.545204. bioRxiv. 2023. PMID: 38014171 Free PMC article. Preprint.
References
-
- Raven J. A., Contributions of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments. Aquat. Microb. Ecol. 56, 177–192 (2009).
-
- Bar-Even A., Noor E., Milo R., A survey of carbon fixation pathways through a quantitative lens. J. Exp. Bot. 63, 2325–2342 (2012). - PubMed
-
- Still C. J., Berry J. A., Collatz G. J., DeFries R. S., Global distribution of C3 and C4 vegetation: Carbon cycle implications. Global Biogeochem. Cycles 17, 6-1–6-14 (2003).
-
- Granum E., Raven J. A., Leegood R. C., How do marine diatoms fix 10 billion tonnes of inorganic carbon per year? Can. J. Bot. 83, 898–908 (2005).
-
- Raven J. A., Beardall J., Giordano M., Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth. Res. 121, 111–124 (2014). - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
