Newly explored machine learning model for river flow time series forecasting at Mary River, Australia

Environ Monit Assess. 2020 Nov 14;192(12):761. doi: 10.1007/s10661-020-08724-1.


Hourly river flow pattern monitoring and simulation is the indispensable precautionary task for river engineering sustainability, water resource management, flood risk mitigation, and impact reduction. Reliable river flow forecasting is highly emphasized to support major decision-makers. This research paper adopts a new implementation approach for the application of a river flow prediction model for hourly prediction of the flow of Mary River in Australia; a novel data-intelligent model called emotional neural network (ENN) was used for this purpose. A historical dataset measured over a 4-year period (2011-2014) at hourly timescale was used in building the ENN-based predictive model. The results of the ENN model were validated against the existing approaches such as the minimax probability machine regression (MPMR), relevance vector machine (RVM), and multivariate adaptive regression splines (MARS) models. The developed models are evaluated against each other for validation purposes. Various numerical and graphical performance evaluators are conducted to assess the predictability of the proposed ENN and the competitive benchmark models. The ENN model, used as an objective simulation tool, revealed an outstanding performance when applied for hourly river flow prediction in comparison with the other benchmark models. However, the order of the model, performance wise, is ENN > MARS > RVM > MPMR. In general, the present results of the proposed ENN model reveal a promising modeling strategy for the hourly simulation of river flow, and such a model can be explored further for its ability to contribute to the state-of-the-art of river engineering and water resources monitoring and future prediction at near real-time forecast horizons.

Keywords: River flow monitoring; Water resources management; Emotional neural network; Machine learning.

MeSH terms

  • Australia
  • Environmental Monitoring*
  • Forecasting
  • Machine Learning
  • Neural Networks, Computer
  • Rivers*