Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct 18;11(24):7137-7145.
doi: 10.7150/jca.49213. eCollection 2020.

Clinical Characteristics Correlate With Outcomes of Immunotherapy in Advanced Non-Small Cell Lung Cancer

Affiliations

Clinical Characteristics Correlate With Outcomes of Immunotherapy in Advanced Non-Small Cell Lung Cancer

Lan Huang et al. J Cancer. .

Abstract

Considering the existing indicators are not sufficient to predict the patient's response to immune checkpoint inhibitors (ICIs), we conducted this study to evaluate the efficacy and safety of ICIs in advanced non-small cell lung cancer (NSCLC) patients, and to determine prognostic factors of ICIs. In this study, 61 patients diagnosed with advanced NSCLC who underwent ICIs were recruited. The univariate analysis revealed the number of metastatic sites, immune-related adverse events (irAEs) (≥ G2) and best response were significantly associated with both progression-free survival (PFS) and overall survival (OS). Peripheral blood biomarkers, including post-treatment neutrophil-to-lymphocyte ratio (NLR) and CEA levels were also associated with PFS, but not OS. The irAEs (≥ G2), best response and age were confirmed as independent predictors of a prolonged survival by multivariate analysis. The development of irAEs ≥ G2 correlated with a survival benefit in patients with advanced NSCLC (median PFS: 7.1 months vs. 4.6 months, P = 0.013). Thus, we concluded that identifying predictors of benefit from ICIs treatment will help to further extend patient survival in advanced NSCLC.

Keywords: Immune checkpoint inhibitors; Immune-related adverse events (irAEs); Non-small cell lung cancer; Peripheral blood biomarker; clinical outcome.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interest exists.

Figures

Figure 1
Figure 1
The correlations between clinicopathological characteristics, hematological markers, clinica response and PFS of the patients with ICIs treatment. A. Numbers of metastasis site affected the PFS for ICIs treatment (P = 0.002). B. CEA levels affected the PFS for ICIs treatment (P = 0.03). C. Serum LDH levels had no significant impacts on PFS for ICIs treatment (P = 0.38). D. Response to ICIs affected the PFS for ICIs treatment (P < 0.001). E. irAE (< G2 / ≥ G2) was associated with PFS for ICIs treatment (P = 0.02). F. irAE (no/any irAE) had no significant impacts on PFS for ICIs treatment (P = 0.107).
Figure 2
Figure 2
Inflammation-related factor NLR had prognostic value for PFS of NSCLC patients with ICIs treatment. A. and B. Variation of NLR volumes from C1 to C4. C. Cycle 1 neutrophil-to-lymphocyte ratio (NLR C1) had no significant impacts on PFS of ICI treatment (P = 0.48). D. NLR C4 correlated with PFS of ICI treatment (P = 0.001).
Figure 3
Figure 3
Clinicopathological and treatment characteristics were associated with OS of NSCLC patients with ICIs treatment. A. Age correlated with the OS for ICIs treatment (P < 0.001). B. Number of metastatic organ affected the OS of ICIs treatment (P = 0.03). C. Treatment response to ICIs affected OS of NSCLC patients (P < 0.001). D. Response to ICIs affected the OS of ICIs treatment (P = 0.03). E. irAE (< G2 / ≥ G2) affected the OS of ICIs treatment (P = 0.01).
Figure 4
Figure 4
Patient and treatment characteristics were associated with ICIs treatment response. A. Differences in treatment strategies between ICIs treatment responses (P = 0.035). B. Differences in progression situation between ICIs treatment responses (P = 0.01).

Similar articles

Cited by

References

    1. Siegel RL, Miller KD, Jemal AA-O. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30. - PubMed
    1. Novello S, Barlesi F, Califano R. et al. Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27:v1–v27. - PubMed
    1. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553:446–54. - PubMed
    1. Kazandjian D, Suzman DL, Blumenthal G. et al. FDA Approval Summary: Nivolumab for the Treatment of Metastatic Non-Small Cell Lung Cancer With Progression On or After Platinum-Based Chemotherapy. Oncologist. 2016;21:634–42. - PMC - PubMed
    1. Sul J, Blumenthal GM, Jiang X. et al. FDA Approval Summary: Pembrolizumab for the Treatment of Patients With Metastatic Non-Small Cell Lung Cancer Whose Tumors Express Programmed Death-Ligand 1. Oncologist. 2016;21:643–50. - PMC - PubMed