HOS1 activates DNA repair systems to enhance plant thermotolerance
- PMID: 33199892
- DOI: 10.1038/s41477-020-00809-6
HOS1 activates DNA repair systems to enhance plant thermotolerance
Erratum in
-
Publisher Correction: HOS1 activates DNA repair systems to enhance plant thermotolerance.Nat Plants. 2021 Feb;7(2):237. doi: 10.1038/s41477-020-00842-5. Nat Plants. 2021. PMID: 33349643 No abstract available.
Abstract
Plants possess an astonishing capability of effectively adapting to a wide range of temperatures, ranging from freezing to near-boiling temperatures1,2. Yet, heat is a critical obstacle to plant survival. The deleterious effects of heat shock on cell function include misfolding of cellular proteins, disruption of cytoskeletons and membranes, and disordering of RNA metabolism and genome integrity3-5. Plants stimulate diverse heat shock response pathways in response to abrupt temperature increases. While it is known that stressful high temperatures disturb genome integrity by causing nucleotide modifications and strand breakages or impeding DNA repair6, it is largely unexplored how plants cope with heat-induced DNA damages. Here, we demonstrated that high expression of osmotically reponsive genes 1 (HOS1) induces thermotolerance by activating DNA repair components. Thermotolerance and DNA repair capacity were substantially reduced in HOS1-deficient mutants, in which thermal induction of genes encoding DNA repair systems, such as the DNA helicase RECQ2, was markedly decreased. Notably, HOS1 proteins were thermostabilized in a heat shock factor A1/heat shock protein 90 (HSP90)-dependent manner. Our data indicate that the thermoresponsive HSP90-HOS1-RECQ2 module contributes to sustaining genome integrity during the acquisition of thermotolerance, providing a distinct molecular link between DNA repair and thermotolerance.
Comment in
-
DNA repair meets climate change.Nat Plants. 2020 Dec;6(12):1398-1399. doi: 10.1038/s41477-020-00804-x. Nat Plants. 2020. PMID: 33199894 No abstract available.
Similar articles
-
Heat Stress Responses and Thermotolerance in Maize.Int J Mol Sci. 2021 Jan 19;22(2):948. doi: 10.3390/ijms22020948. Int J Mol Sci. 2021. PMID: 33477941 Free PMC article. Review.
-
Identification of Heat Shock Transcription Factor Genes Involved in Thermotolerance of Octoploid Cultivated Strawberry.Int J Mol Sci. 2016 Dec 17;17(12):2130. doi: 10.3390/ijms17122130. Int J Mol Sci. 2016. PMID: 27999304 Free PMC article.
-
CaHsfA1d Improves Plant Thermotolerance via Regulating the Expression of Stress- and Antioxidant-Related Genes.Int J Mol Sci. 2020 Nov 8;21(21):8374. doi: 10.3390/ijms21218374. Int J Mol Sci. 2020. PMID: 33171626 Free PMC article.
-
HTT2 promotes plant thermotolerance in Brassica rapa.BMC Plant Biol. 2018 Jun 20;18(1):127. doi: 10.1186/s12870-018-1346-x. BMC Plant Biol. 2018. PMID: 29925322 Free PMC article.
-
Beat the heat: plant- and microbe-mediated strategies for crop thermotolerance.Trends Plant Sci. 2022 Aug;27(8):802-813. doi: 10.1016/j.tplants.2022.02.008. Epub 2022 Mar 21. Trends Plant Sci. 2022. PMID: 35331665 Review.
Cited by
-
Identification of candidate regulators of the response to early heat stress in climate-adapted wheat landraces via transcriptomic and co-expression network analyses.Front Plant Sci. 2024 Jan 3;14:1252885. doi: 10.3389/fpls.2023.1252885. eCollection 2023. Front Plant Sci. 2024. PMID: 38235195 Free PMC article.
-
Plants and global warming: challenges and strategies for a warming world.Plant Cell Rep. 2024 Jan 2;43(1):27. doi: 10.1007/s00299-023-03083-w. Plant Cell Rep. 2024. PMID: 38163826 Review.
-
LHT1/MAC7 contributes to proper alternative splicing under long-term heat stress and mediates variation in the heat tolerance of Arabidopsis.PNAS Nexus. 2023 Nov 14;2(11):pgad348. doi: 10.1093/pnasnexus/pgad348. eCollection 2023 Nov. PNAS Nexus. 2023. PMID: 38024403 Free PMC article.
-
The HOS1-PIF4/5 module controls callus formation in Arabidopsis leaf explants.Plant Signal Behav. 2023 Dec 31;18(1):2261744. doi: 10.1080/15592324.2023.2261744. Epub 2023 Sep 25. Plant Signal Behav. 2023. PMID: 37747842 Free PMC article.
-
The miR165/166-PHABULOSA module promotes thermotolerance by transcriptionally and posttranslationally regulating HSFA1.Plant Cell. 2023 Aug 2;35(8):2952-2971. doi: 10.1093/plcell/koad121. Plant Cell. 2023. PMID: 37132478
References
-
- Wanner, L. A. & Junttila, O. Cold-induced freezing tolerance in Arabidopsis. Plant Physiol. 120, 391–400 (1999). - DOI
-
- Wahid, A., Gelani, S., Ashraf, M. & Foolad, M. R. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61, 199–223 (2007). - DOI
-
- Toivola, D. M., Strnad, P., Habtezion, A. & Omary, M. B. Intermediate filaments take the heat as stress proteins. Trends Cell Biol. 20, 79–91 (2010). - DOI
-
- Welch, W. J. & Suhan, J. P. Cellular and biochemical events in mammalian cells during and after recovery from physiological stress. J. Cell Biol. 103, 2035–2052 (1986). - DOI
-
- Boulon, S., Westman, B. J., Hutten, S., Boisvert, F. M. & Lamond, A. I. The nucleolus under stress. Mol. Cell 40, 216–227 (2010). - DOI
MeSH terms
LinkOut - more resources
Full Text Sources
