p75NTR Promotes Astrocyte Proliferation in Response to Cortical Stab Wound

Cell Mol Neurobiol. 2022 May;42(4):1153-1166. doi: 10.1007/s10571-020-01006-x. Epub 2020 Nov 17.

Abstract

Astrogliosis after brain trauma can have a significant impact on functional recovery. However, little is known about the mechanisms underlying astrocyte proliferation and subsequent astrogliosis. In this study, we established a cortical stab wound injury mouse model and observed dramatic astrocyte activation and nerve growth factor receptor (p75NTR) upregulation near the lesion. We also found profound alterations in the cell cycle of astrocytes near the lesion, with a switch from a mitotically quiescent (G0) phase to the G2/M and S phases. However, no changes in the level of astrocyte apoptosis were observed. Cell cycle progression to the G2/M and S phases and CDK2 protein levels in response to cortical stab wound was inhibited after p75NTR knockdown in mouse astrocytes. Conversely, p75NTR overexpression in mouse astrocytes was sufficient in promoting cell cycle progression. In conclusion, our results suggested that p75NTR upregulation in astrocytes after brain injury induces cell cycle entry by promoting CDK2 expression and promoting astrocyte proliferation. Our findings provided a better understanding of astrocytic responses after cortical stab wound injury in mice.

Keywords: Astrocyte; CDK2; Cell cycle; Proliferation; Traumatic brain injury; p75NTR.

MeSH terms

  • Animals
  • Astrocytes* / metabolism
  • Cell Proliferation
  • Gliosis / pathology
  • Mice
  • Nerve Tissue Proteins
  • Receptors, Growth Factor
  • Receptors, Nerve Growth Factor / metabolism
  • Wounds, Stab* / metabolism
  • Wounds, Stab* / pathology

Substances

  • Nerve Tissue Proteins
  • Receptors, Growth Factor
  • Receptors, Nerve Growth Factor
  • Ngfr protein, rat