Hydrogen sulfide and DNA repair

Redox Biol. 2021 Jan:38:101675. doi: 10.1016/j.redox.2020.101675. Epub 2020 Oct 28.

Abstract

Recent evidence has revealed that exposing cells to exogenous H 2 S or inhibiting cellular H 2 S synthesis can modulate cell cycle checkpoints, DNA damage and repair, and the expression of proteins involved in the maintenance of genomic stability, all suggesting that H 2 S plays an important role in the DNA damage response (DDR). Here we review the role of H 2 S in the DRR and maintenance of genomic stability. Treatment of various cell types with pharmacologic H 2 S donors or cellular H 2 S synthesis inhibitors modulate the G 1 checkpoint, inhibition of DNA synthesis, and cause p21, and p53 induction. Moreover, in some cell models H 2 S exposure induces PARP-1 and g-H2AX foci formation, increases PCNA, CHK2, Ku70, Ku80, and DNA polymerase-d protein expression, and maintains mitochondrial genomic stability. Our group has also revealed that H 2 S bioavailability and the ATR kinase regulate each other with ATR inhibition lowering cellular H 2 S concentrations, whereas intracellular H 2 S concentrations regulate ATR kinase activity via ATR serine 435 phosphorylation. In summary, these findings have many implications for the DDR, for cancer chemotherapy, and fundamental biochemical metabolic pathways involving H 2 S.

Keywords: 3-MST; ATR; CBS; CSE; DNA damage Response; H2S.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Ataxia Telangiectasia Mutated Proteins / genetics
  • Ataxia Telangiectasia Mutated Proteins / metabolism
  • Cell Cycle Proteins / metabolism
  • DNA Damage
  • DNA Repair*
  • Humans
  • Hydrogen Sulfide*
  • Phosphorylation

Substances

  • Cell Cycle Proteins
  • Ataxia Telangiectasia Mutated Proteins
  • Hydrogen Sulfide