High-resolution cryo-EM using beam-image shift at 200 keV
- PMID: 33209328
- PMCID: PMC7642776
- DOI: 10.1107/S2052252520013482
High-resolution cryo-EM using beam-image shift at 200 keV
Abstract
Recent advances in single-particle cryo-electron microscopy (cryo-EM) data collection utilize beam-image shift to improve throughput. Despite implementation on 300 keV cryo-EM instruments, it remains unknown how well beam-image-shift data collection affects data quality on 200 keV instruments and the extent to which aberrations can be computationally corrected. To test this, a cryo-EM data set for aldolase was collected at 200 keV using beam-image shift and analyzed. This analysis shows that the instrument beam tilt and particle motion initially limited the resolution to 4.9 Å. After particle polishing and iterative rounds of aberration correction in RELION, a 2.8 Å resolution structure could be obtained. This analysis demonstrates that software correction of microscope aberrations can provide a significant improvement in resolution at 200 keV.
Keywords: RELION; aldolase; single-particle cryo-EM.
© Jennifer N. Cash et al. 2020.
Figures
Similar articles
-
High-quality, high-throughput cryo-electron microscopy data collection via beam tilt and astigmatism-free beam-image shift.J Struct Biol. 2019 Dec 1;208(3):107396. doi: 10.1016/j.jsb.2019.09.013. Epub 2019 Sep 25. J Struct Biol. 2019. PMID: 31562921
-
High-speed high-resolution data collection on a 200 keV cryo-TEM.IUCrJ. 2022 Jan 29;9(Pt 2):243-252. doi: 10.1107/S2052252522000069. eCollection 2022 Mar 1. IUCrJ. 2022. PMID: 35371504 Free PMC article.
-
A Robust Single-Particle Cryo-Electron Microscopy (cryo-EM) Processing Workflow with cryoSPARC, RELION, and Scipion.J Vis Exp. 2022 Jan 31;(179). doi: 10.3791/63387. J Vis Exp. 2022. PMID: 35104261
-
Combining high throughput and high quality for cryo-electron microscopy data collection.Acta Crystallogr D Struct Biol. 2020 Aug 1;76(Pt 8):724-728. doi: 10.1107/S2059798320008347. Epub 2020 Jul 27. Acta Crystallogr D Struct Biol. 2020. PMID: 32744254 Free PMC article. Review.
-
Processing of Structurally Heterogeneous Cryo-EM Data in RELION.Methods Enzymol. 2016;579:125-57. doi: 10.1016/bs.mie.2016.04.012. Epub 2016 May 31. Methods Enzymol. 2016. PMID: 27572726 Review.
Cited by
-
Characterizing the resolution and throughput of the Apollo direct electron detector.J Struct Biol X. 2022 Dec 5;7:100080. doi: 10.1016/j.yjsbx.2022.100080. eCollection 2023. J Struct Biol X. 2022. PMID: 36578473 Free PMC article.
-
Sub-3 Å Cryo-EM Structures of Necrosis Virus Particles via the Use of Multipurpose TEM with Electron Counting Camera.Int J Mol Sci. 2021 Jun 25;22(13):6859. doi: 10.3390/ijms22136859. Int J Mol Sci. 2021. PMID: 34202259 Free PMC article.
-
Optimized cryo-EM data-acquisition workflow by sample-thickness determination.Acta Crystallogr D Struct Biol. 2021 May 1;77(Pt 5):565-571. doi: 10.1107/S205979832100334X. Epub 2021 Apr 27. Acta Crystallogr D Struct Biol. 2021. PMID: 33950013 Free PMC article.
-
Single-Particle Cryo-EM Data Collection with Stage Tilt using Leginon.J Vis Exp. 2022 Jul 1;(185):10.3791/64136. doi: 10.3791/64136. J Vis Exp. 2022. PMID: 35848829 Free PMC article.
-
Present and Emerging Methodologies in Cryo-EM Single-Particle Analysis.Biophys J. 2020 Oct 6;119(7):1281-1289. doi: 10.1016/j.bpj.2020.08.027. Epub 2020 Sep 1. Biophys J. 2020. PMID: 32919493 Free PMC article. Review.
References
-
- Alewijnse, B., Ashton, A. W., Chambers, M. G., Chen, S., Cheng, A., Ebrahim, M., Eng, E. T., Hagen, W. J. H., Koster, A. J., López, C. S., Lukoyanova, N., Ortega, J., Renault, L., Reyntjens, S., Rice, W. J., Scapin, G., Schrijver, R., Siebert, A., Stagg, S. M., Grum-Tokars, V., Wright, E. R., Wu, S., Yu, Z., Zhou, Z. H., Carragher, B. & Potter, C. S. (2017). J. Struct. Biol. 199, 225–236. - PMC - PubMed
