Diosmetin reduces bone loss and osteoclastogenesis by regulating the expression of TRPV1 in osteoporosis rats

Ann Transl Med. 2020 Oct;8(20):1312. doi: 10.21037/atm-20-6309.

Abstract

Background: Osteoporosis is a systemic skeletal disorder and occurs frequently in postmenopausal women and older men. This study aimed to examine whether diosmetin (DIO) can relieve estrogen deficiency-induced osteoporosis and to explore the underlying mechanisms of this potential effect.

Methods: Forty-nine Sprague-Dawley (SD) rats were divided into seven groups. Six groups underwent bilateral ovariectomy (OVX), while the sham group underwent ovarian exposure surgery. DIO and evodiamine were administered 3 days before surgery, and then subcutaneously every 3 days for 3 months in the following fashion: group I, DIO (100 mg/kg); group II, OVX; group III, OVX + DIO (50 mg/kg); group IV, OVX + DIO (100 mg/kg); group V, OVX + evodiamine (10 mg/kg) group; group VI, OVX + DIO (100 mg/kg) + evodiamine (10 mg/kg) group. Bone histopathological damage, bone loss, osteoclast production, and the expression level of transient receptor potential vanilloid 1 (TRPV1) were detected.

Results: Compared with the sham group, the expression of bone resorption-related genes, osteoclast-associated receptor (OSCAR) (1.00%±0.16% versus 4.5%±0.28%, **, P<0.01) and tartrate-resistant acid phosphatase (TRAP) (2.0%±0.6% versus 18.00±1.2%, ***, P<0.001), was increased significantly. The protein level of osteogenic marker proteins, osterix (Osx) (1.0%±0.1% versus 0.03%±0.01%, **, P<0.01) and type 1 collagen (COL1A1) (1.0%±0.13% versus 0.13%±0.05%, **, P<0.01) was decreased significantly with the increase of TRPV1 (1.0%±0.15% versus 2.89%±0.28%, **, P<0.01) protein level. Notably, DIO can alleviate some abnormal symptoms related to osteoporosis.

Conclusions: DIO can relieve typical osteoporosis symptoms in an OVX osteoporosis rat model. The underlying mechanism may be associated with the downregulation of TRPV1.

Keywords: Osteoporosis; bone loss; diosmetin (DIO); osteoclastogenesis; reduction; transient receptor potential vanilloid 1 (TRPV1).