Induction of therapeutic levels of HbF in genome-edited primary β0 39-thalassaemia haematopoietic stem and progenitor cells

Br J Haematol. 2021 Jan;192(2):395-404. doi: 10.1111/bjh.17167. Epub 2020 Nov 20.

Abstract

Hereditary persistence of fetal haemoglobin (HPFH) is the major modifier of the clinical severity of β-thalassaemia. The homozygous mutation c.-196 C>T in the Aγ-globin (HBG1) promoter, which causes Sardinian δβ0 -thalassaemia, is able to completely rescue the β-major thalassaemia phenotype caused by the β0 39-thalassaemia mutation, ensuring high levels of fetal haemoglobin synthesis during adulthood. Here, we describe a CRISPR/Cas9 genome-editing approach, combined with the non-homologous end joining (NHEJ) pathway repair, aimed at reproducing the effects of this naturally occurring HPFH mutation in both HBG promoters. After selecting the most efficient guide RNA in K562 cells, we edited the HBG promoters in human umbilical cord blood-derived erythroid progenitor 2 cells (HUDEP-2) and in haematopoietic stem and progenitor cells (HSPCs) from β0 -thalassaemia patients to assess the therapeutic potential of HbF induction. Our results indicate that small deletions targeting the -196-promoter region restore high levels of fetal haemoglobin (HbF) synthesis in all cell types tested. In pools of HSPCs derived from homozygous β0 39-thalassaemia patients, a 20% editing determined a parallel 20% increase of HbF compared to unedited pools. These results suggest that editing the region of HBG promoters around the -196 position has the potential to induce therapeutic levels of HbF in patients with most types of β-thalassaemia irrespective of the β-globin gene (HBB) mutations.

Keywords: CRISPR/Cas9; fetal hemoglobin induction; genome editing; sardinian δβ0-thalassemia; β0-thalassemia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • CRISPR-Cas Systems
  • Cells, Cultured
  • Fetal Hemoglobin / genetics*
  • Gene Editing / methods*
  • HEK293 Cells
  • Hematopoietic Stem Cells / metabolism*
  • Humans
  • K562 Cells
  • Up-Regulation
  • beta-Thalassemia / genetics*

Substances

  • Fetal Hemoglobin