Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun;31(6):3884-3897.
doi: 10.1007/s00330-020-07450-z. Epub 2020 Nov 21.

Natural history of pathologically confirmed pulmonary subsolid nodules with deep learning-assisted nodule segmentation

Affiliations

Natural history of pathologically confirmed pulmonary subsolid nodules with deep learning-assisted nodule segmentation

Lin-Lin Qi et al. Eur Radiol. 2021 Jun.

Abstract

Objective: To explore the natural history of pulmonary subsolid nodules (SSNs) with different pathological types by deep learning-assisted nodule segmentation.

Methods: Between June 2012 and June 2019, 95 resected SSNs with preoperative long-term follow-up were enrolled in this retrospective study. SSN detection and segmentation were performed on preoperative follow-up CTs using the deep learning-based Dr. Wise system. SSNs were categorized into invasive adenocarcinoma (IAC, n = 47) and non-IAC (n = 48) groups; according to the interval change during the preoperative follow-up, SSNs were divided into growth (n = 68), nongrowth (n = 22), and new emergence (n = 5) groups. We analyzed the cumulative percentages and pattern of SSN growth and identified significant factors for IAC diagnosis and SSN growth.

Results: The mean preoperative follow-up was 42.1 ± 17.0 months. More SSNs showed growth or new emergence in the IAC than in the non-IAC group (89.4% vs. 64.6%, p = 0.009). Volume doubling time was non-significantly shorter for IACs than for non-IACs (1436.0 ± 1188.2 vs. 2087.5 ± 1799.7 days, p = 0.077). Median mass doubling time was significantly shorter for IACs than for non-IACs (821.7 vs. 1944.1 days, p = 0.001). Lobulated sign (p = 0.002) and SSN mass (p = 0.004) were significant factors for differentiating IACs. IACs showed significantly higher cumulative growth percentages than non-IACs in the first 70 months of follow-up. The growth pattern of SSNs may conform to the exponential model. The initial volume (p = 0.042) was a predictor for SSN growth.

Conclusions: IACs appearing as SSNs showed an indolent course. The mean growth rate was larger for IACs than for non-IACs. SSNs with larger initial volume are more likely to grow.

Key points: • Invasive adenocarcinomas (IACs) appearing as subsolid nodules (SSNs), with a mean volume doubling time (VDT) of 1436.0 ± 1188.2 days and median mass doubling time (MDT) of 821.7 days, showed an indolent course. • The VDT was shorter for IACs than for non-IACs (1436.0 ± 1188.2 vs. 2087.5 ± 1799.7 days), but the difference was not significant (p = 0.077). The median MDT was significantly shorter for IACs than for non-IACs (821.7 vs. 1944.1 days, p = 0.001). • SSNs with lobulated sign and larger mass (> 390.5 mg) may very likely be IACs. SSNs with larger initial volume are more likely to grow.

Keywords: Adenocarcinoma; Biological phenomena; Neural networks (computer); Solitary pulmonary nodule; Tomography, X-ray computed.

PubMed Disclaimer

Similar articles

Cited by

References

    1. MacMahon H, Naidich DP, Goo JM et al (2017) Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017. Radiology 284(1):228–243
    1. Bueno J, Landeras L, Chung JH (2018) Updated Fleischner Society Guidelines for Managing Incidental Pulmonary Nodules: common questions and challenging scenarios. Radiographics 38(5):1337–1350 - PubMed
    1. Travis WD, Asamura H, Bankier AA et al (2016) The IASLC Lung Cancer Staging Project: proposals for coding T categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming eighth edition of the TNM classification of lung cancer. J Thorac Oncol 11(8):1204–1223 - PubMed
    1. Aoki T (2015) Growth of pure ground-glass lung nodule detected at computed tomography. J Thorac Dis 7(9):E326–E328 - PubMed - PMC
    1. Song YS, Park CM, Park SJ, Lee SM, Jeon YK, Goo JM (2014) Volume and mass doubling times of persistent pulmonary subsolid nodules detected in patients without known malignancy. Radiology 273(1):276–284 - PubMed

MeSH terms

LinkOut - more resources