The right anterior temporal lobe critically contributes to magnitude knowledge

Brain Commun. 2020 Sep 24;2(2):fcaa157. doi: 10.1093/braincomms/fcaa157. eCollection 2020.


Cognitive estimation is a mental ability applied to solve numerical problems when precise facts are unknown, unavailable or impractical to calculate. It has been associated with several underlying cognitive components, most often with executive functions and semantic memory. Little is known about the neural correlates of cognitive estimation. To address this issue, the present cross-sectional study applied lesion-symptom mapping in a group of 55 patients with left hemineglect due to right-hemisphere stroke. Previous evidence suggests a high prevalence of cognitive estimation impairment in these patients, as they might show a general bias towards large magnitudes. Compared to 55 age- and gender-matched healthy controls, the patient group demonstrated impaired cognitive estimation. However, the expected large magnitude bias was not found. Lesion-symptom mapping related their general estimation impairment predominantly to brain damage in the right anterior temporal lobe. Also critically involved were the right uncinate fasciculus, the anterior commissure and the right inferior frontal gyrus. The main findings of this study emphasize the role of semantic memory in cognitive estimation, with reference to a growing body of neuroscientific literature postulating a transmodal hub for semantic cognition situated in the bilateral anterior temporal lobe. That such semantic hub function may also apply to numerical knowledge is not undisputed. We here propose a critical contribution of the right anterior temporal lobe to at least one aspect of number processing, i.e. the knowledge about real-world numerical magnitudes.

Keywords: anterior temporal lobe; cognitive estimation; lesion-symptom mapping; representational hemineglect; stroke.