Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Nov 24;18(1):358.
doi: 10.1186/s12916-020-01820-6.

The dynamic wound microbiome

Affiliations
Free PMC article
Review

The dynamic wound microbiome

Chunan Liu et al. BMC Med. .
Free PMC article

Abstract

Background: Diabetic foot ulcers (DFUs) account for the majority of all limb amputations and hospitalizations due to diabetes complications. With 30 million cases of diabetes in the USA and 500,000 new diagnoses each year, DFUs are a growing health problem. Diabetes patients with limb amputations have high postoperative mortality, a high rate of secondary amputation, prolonged inpatient hospital stays, and a high incidence of re-hospitalization. DFU-associated amputations constitute a significant burden on healthcare resources that cost more than 10 billion dollars per year. Currently, there is no way to identify wounds that will heal versus those that will become severely infected and require amputation.

Main body: Accurate identification of causative pathogens in diabetic foot ulcers is a critical component of effective treatment. Compared to traditional culture-based methods, advanced sequencing technologies provide more comprehensive and unbiased profiling on wound microbiome with a higher taxonomic resolution, as well as functional annotation such as virulence and antibiotic resistance. In this review, we summarize the latest developments in defining the microbiology of diabetic foot ulcers that have been unveiled by sequencing technologies and discuss both the future promises and current limitations of these approaches. In particular, we highlight the temporal patterns and system dynamics in the diabetic foot microbiome monitored and measured during wound progression and medical intervention, and explore the feasibility of molecular diagnostics in clinics.

Conclusion: Molecular tests conducted during weekly office visits to clean and examine DFUs would allow clinicians to offer personalized treatment and antibiotic therapy. Personalized wound management could reduce healthcare costs, improve quality of life for patients, and recoup lost productivity that is important not only to the patient, but also to healthcare payers and providers. These efforts could also improve antibiotic stewardship and control the rise of "superbugs" vital to global health.

Keywords: Diabetic foot ulcer; Metagenomics; Next-generation sequencing; Wound microbiome.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
mNGS workflow. mNGS analysis mainly involves three steps: (a) isolation of the DNA from clinical samples, (b) library generation and sequencing, and (c) computational analysis of the sequence reads to identify the organisms and their relative abundances in a given sample, and the presence of virulence-related genes

Similar articles

Cited by

References

    1. WHO | Global report on diabetes. WHO. http://www.who.int/diabetes/global-report/en/. Accessed 22 Sept 2020.
    1. Armstrong DG, Boulton AJM, Bus SA. Diabetic foot ulcers and their recurrence. 2017. 10.1056/NEJMra1615439. - PubMed
    1. Skrepnek GH, Mills JL, Lavery LA, Armstrong DG. Health care service and outcomes among an estimated 6.7 million ambulatory care diabetic foot cases in the U.S. Diabetes Care. 2017;40:936–942. doi: 10.2337/dc16-2189. - DOI - PubMed
    1. Lazzarini PA, Pacella RE, Armstrong DG, van Netten JJ. Diabetes-related lower-extremity complications are a leading cause of the global burden of disability. Diabet Med. 2018;35:1297–1299. doi: 10.1111/dme.13680. - DOI - PubMed
    1. Zhang Y, Lazzarini PA, McPhail SM, van Netten JJ, Armstrong DG, Pacella RE. Global disability burdens of diabetes-related lower-extremity complications in 1990 and 2016. Diabetes Care. 2020;43:964–974. doi: 10.2337/dc19-1614. - DOI - PubMed

Publication types