Endovascular Selective Intra-Arterial Infusion of Mesenchymal Stem Cells Loaded With Delta-24 in a Canine Model

Neurosurgery. 2020 Dec 15;88(1):E102-E113. doi: 10.1093/neuros/nyaa470.

Abstract

Background: Delta-24-RGD, an oncolytic adenovirus, shows promise against glioblastoma. To enhance virus delivery, we recently demonstrated that human bone marrow-derived mesenchymal stem cells loaded with Delta-24-RGD (hMSC-D24) can eradicate glioblastomas in mouse models. There are no studies examining the safety of endovascular selective intra-arterial (ESIA) infusions of MSC-D24 in large animals simulating human clinical situations.

Objective: To perform canine preclinical studies testing the feasibility and safety of delivering increasing doses of hMSCs-D24 via ESIA infusions.

Methods: ESIA infusions of hMSC-D24 were performed in the cerebral circulation of 10 normal canines in the target vessels (internal carotid artery [ICA]/P1) via transfemoral approach using commercially available microcatheters. Increasing concentrations of hMSC-D24 or particles (as a positive control) were injected into 1 hemisphere; saline (negative control) was infused contralaterally. Toxicity (particularly embolic stroke) was assessed on postinfusion angiography, diffusion-weighted magnetic resonance imaging, clinical exam, and necropsy.

Results: ESIA injections were performed in the ICA (n = 7) or P1 (n = 3). In 2 animals injected with particles (positive control), strokes were detected by all assays. Of 6 canines injected with hMSC-D24 through the anterior circulation, escalating dose from 2 × 106 cells/20 mL to 1 × 108 cells/10 mL resulted in no strokes. Two animals had ischemic and hemorrhagic strokes after posterior cerebral artery catheterization. A survival experiment of 2 subjects resulted in no complications detected for 24-h before euthanization.

Conclusion: This novel study simulating ESIA infusion demonstrates that MSCs-D24 can be infused safely at least up to doses of 1 × 108 cells/10 mL (107 cells/ml) in the canine anterior circulation using commercially available microcatheters. These findings support a clinical trial of ESIA infusion of hMSCs-D24.

Keywords: Cerebrovascular; Endovascular; Glioblastoma; Glioma; Intra-arterial; Microcatheter; Superselective.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cancer Vaccines / administration & dosage*
  • Dogs
  • Heterografts
  • Humans
  • Infusions, Intra-Arterial
  • Male
  • Mesenchymal Stem Cell Transplantation / methods*
  • Models, Animal
  • Oncolytic Virotherapy / methods*

Substances

  • Cancer Vaccines