Multiple wheat genomes reveal global variation in modern breeding

Nature. 2020 Dec;588(7837):277-283. doi: 10.1038/s41586-020-2961-x. Epub 2020 Nov 25.


Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat (Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome1, and the lack of genome-assembly data for multiple wheat lines2,3. Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses4,5. We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm16, a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acclimatization / genetics
  • Animals
  • Centromere / genetics
  • Centromere / metabolism
  • Chromosome Mapping
  • Cloning, Molecular
  • DNA Copy Number Variations / genetics
  • DNA Transposable Elements / genetics
  • Edible Grain / genetics
  • Edible Grain / growth & development
  • Genes, Plant / genetics
  • Genetic Introgression
  • Genetic Variation*
  • Genome, Plant / genetics*
  • Genomics*
  • Haplotypes
  • Insecta / pathogenicity
  • Internationality*
  • NLR Proteins / genetics
  • Plant Breeding / methods*
  • Plant Diseases / genetics
  • Plant Proteins / genetics
  • Polymorphism, Single Nucleotide / genetics
  • Polyploidy
  • Triticum / classification
  • Triticum / genetics*
  • Triticum / growth & development


  • DNA Transposable Elements
  • NLR Proteins
  • Plant Proteins