Catechin-Rich Green Tea Extract and the Loss-of-TLR4 Signaling Differentially Alter the Hepatic Metabolome in Mice with Nonalcoholic Steatohepatitis
- PMID: 33249742
- DOI: 10.1002/mnfr.202000998
Catechin-Rich Green Tea Extract and the Loss-of-TLR4 Signaling Differentially Alter the Hepatic Metabolome in Mice with Nonalcoholic Steatohepatitis
Abstract
Scope: Catechin-rich green tea extract (GTE) limits inflammation in nonalcoholic steatohepatitis (NASH) consistent with a Toll-like receptor 4 (TLR4)-dependent mechanism. It is hypothesized that GTE supplementation during NASH will shift the hepatic metabolome similar to that attributed to the loss-of-TLR4 signaling.
Methods and results: Wild-type (WT) and loss-of-function TLR4-mutant (TLR4mut ) mice are fed a high-fat diet containing 0% or 2% GTE for 8 weeks prior to performing untargeted mass spectrometry-based metabolomics on liver tissue. The loss-of-TLR4 signaling and GTE shift the hepatic metabolome away from that of WT mice. However, relatively few metabolites are altered by GTE in WT mice to the same extent as the loss-of-TLR4 signaling in TLR4mut mice. GTE increases acetyl-coenzyme A precursors and spermidine to a greater extent than the loss-of-TLR4 signaling. Select metabolites associated with thiol metabolism are similarly affected by GTE and the loss-of-TLR4 signaling. Glycerophospholipid catabolites are decreased by GTE, but are unaffected in TLR4mut mice. Conversely, the loss-of-TLR4 signaling but not GTE increases several bile acid metabolites.
Conclusion: GTE limitedly alters the hepatic metabolome consistent with a TLR4-dependent mechanism. This suggests that the anti-inflammatory activities of GTE and loss-of-TLR4 signaling that regulate hepatic metabolism to abrogate NASH are likely due to distinct mechanisms.
Keywords: Toll-like receptor-4; catechins; green tea; nonalcoholic steatohepatitis; polar metabolomics.
© 2020 Wiley-VCH GmbH.
Similar articles
-
Green Tea Extract Treatment in Obese Mice with Nonalcoholic Steatohepatitis Restores the Hepatic Metabolome in Association with Limiting Endotoxemia-TLR4-NFκB-Mediated Inflammation.Mol Nutr Food Res. 2019 Dec;63(24):e1900811. doi: 10.1002/mnfr.201900811. Epub 2019 Oct 9. Mol Nutr Food Res. 2019. PMID: 31574193 Free PMC article.
-
Green tea extract protects against hepatic NFκB activation along the gut-liver axis in diet-induced obese mice with nonalcoholic steatohepatitis by reducing endotoxin and TLR4/MyD88 signaling.J Nutr Biochem. 2018 Mar;53:58-65. doi: 10.1016/j.jnutbio.2017.10.016. Epub 2017 Nov 3. J Nutr Biochem. 2018. PMID: 29190550
-
Epigallocatechin gallate but not catechin prevents nonalcoholic steatohepatitis in mice similar to green tea extract while differentially affecting the gut microbiota.J Nutr Biochem. 2020 Oct;84:108455. doi: 10.1016/j.jnutbio.2020.108455. Epub 2020 Jun 20. J Nutr Biochem. 2020. PMID: 32688217
-
Green tea extract treatment reduces NFκB activation in mice with diet-induced nonalcoholic steatohepatitis by lowering TNFR1 and TLR4 expression and ligand availability.J Nutr Biochem. 2017 Mar;41:34-41. doi: 10.1016/j.jnutbio.2016.12.007. Epub 2016 Dec 21. J Nutr Biochem. 2017. PMID: 28038359
-
Anti-inflammatory activities of green tea catechins along the gut-liver axis in nonalcoholic fatty liver disease: lessons learned from preclinical and human studies.J Nutr Biochem. 2020 Nov;85:108478. doi: 10.1016/j.jnutbio.2020.108478. Epub 2020 Aug 12. J Nutr Biochem. 2020. PMID: 32801031 Review.
Cited by
-
Naringenin prevents non-alcoholic steatohepatitis by modulating the host metabolome and intestinal microbiome in MCD diet-fed mice.Food Sci Nutr. 2023 Sep 27;11(12):7826-7840. doi: 10.1002/fsn3.3700. eCollection 2023 Dec. Food Sci Nutr. 2023. PMID: 38107095 Free PMC article.
-
Natural flavonoids: Potential therapeutic strategies for non-alcoholic fatty liver disease.Front Pharmacol. 2022 Sep 16;13:1005312. doi: 10.3389/fphar.2022.1005312. eCollection 2022. Front Pharmacol. 2022. PMID: 36188561 Free PMC article. Review.
-
Systemic and Ocular Anti-Inflammatory Mechanisms of Green Tea Extract on Endotoxin-Induced Ocular Inflammation.Front Endocrinol (Lausanne). 2022 Jul 15;13:899271. doi: 10.3389/fendo.2022.899271. eCollection 2022. Front Endocrinol (Lausanne). 2022. PMID: 35909558 Free PMC article.
References
-
- T. Hardy, F. Oakley, Q. M. Anstee, C. P. Day, Annu. Rev. Pathol.: Mech. Dis. 2016, 11, 451.
-
- Z. M. Younossi, A. B. Koenig, D. Abdelatif, Y. Fazel, L. Henry, M. Wymer, Hepatology 2016, 64, 73.
-
- E. A. Finkelstein, O. A. Khavjou, H. Thompson, J. G. Trogdon, L. Pan, B. Sherry, W. Dietz, Am. J. Prev. Med. 2012, 42, 563.
-
- P. Brun, I. Castagliuolo, V. Di Leo, A. Buda, M. Pinzani, G. Palu, D. Martines, Am. J. Physiol. 2007, 292, G518.
-
- P. D. Cani, J. Amar, M. A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, A. M. Neyrinck, F. Fava, K. M. Tuohy, C. Chabo, A. Waget, E. Delmee, B. Cousin, T. Sulpice, B. Chamontin, J. Ferrieres, J. F. Tanti, G. R. Gibson, L. Casteilla, N. M. Delzenne, M. C. Alessi, R. Burcelin, Diabetes 2007, 56, 1761.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
