Identification of naphthyridine and quinoline derivatives as potential Nsp16-Nsp10 inhibitors: a pharmacoinformatics study

J Biomol Struct Dyn. 2022 Jun;40(9):3899-3906. doi: 10.1080/07391102.2020.1851305. Epub 2020 Nov 30.

Abstract

This research is a recent effort to explore some new heterocyclic compounds as novel and potential nonstructural protein-16-nonstructural protein-10 (Nsp16-Nsp10) inhibitors for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibition. The SARS-CoV-2 is causative agent of coronavirus disease 2019 (COVID-19) pandemic. A set of 58 molecules belongs to the naphthyridine and quinoline derivatives have been recently synthesized and considered for structure-based virtual screening against Nsp16-Nsp10. Molecular docking was virtually performed to screen for anti-SARS-CoV-2 activity against Nsp16-Nsp10. Fourteen out of fifty-eight compounds were exhibited binding affinity higher than co-crystal bound ligand s-adenosylmethionine (SAM) toward Nsp16-Nsp10. Further, the in silico pharmacokinetics assessment was carried out and it was found that two molecules possess the acceptable pharmacokinetic profile, hence considered promising Nsp16-Nsp10 inhibitors. The binding interaction analysis was revealed some crucial binding interactions between the final selected two molecules and ligand-binding amino acid residues of Nsp16-Nsp10 protein. In order to explore the characteristics of the protein-ligand complex and how selected small molecules retained inside the receptor cavity in dynamic states, all-atoms conventional molecular dynamics (MD) simulation was performed. Several factors were obtained from the MD simulation trajectory evidently suggested the potentiality of the molecules and stability of the protein-ligand complex. Finally, the binding affinity of both molecules and SAM was explored through the MM-GBSA approach which explained that both molecules possess strong affection towards the Nsp16-Nsp10. Hence, from the pharmacoinformatics assessment, it can be concluded that both heterocyclic compounds might be crucial for SARS-CoV-2 inhibition, subjected to experimental validation.Communicated by Ramaswamy H. Sarma.

Keywords: SARS-CoV-2; COVID-19; Naphthyridine and quinoline derivatives; Nsp16-Nsp10; molecular dynamics simulation; virtual screening.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19 Drug Treatment*
  • Humans
  • Ligands
  • Methyltransferases / chemistry
  • Molecular Docking Simulation
  • Naphthyridines / pharmacology
  • SARS-CoV-2*
  • Viral Nonstructural Proteins / chemistry

Substances

  • Ligands
  • Naphthyridines
  • Viral Nonstructural Proteins
  • Methyltransferases