SINR- and MI-Based Maximin Robust Waveform Design

Entropy (Basel). 2019 Jan 7;21(1):33. doi: 10.3390/e21010033.


Due to the uncertainties of radar target prior information in the actual scene, the waveform designed based on radar target prior information cannot meet the needs of detection and parameter estimation performance. In this paper, the optimal waveform design techniques under energy constraints for different tasks are considered. To improve the detection performance of radar systems, a novel waveform design method which can maximize the signal-to-interference-plus-noise ratio (SINR) for known and random extended targets is proposed. To improve the performance of parameter estimation, another waveform design method which can maximize the mutual information (MI) between the radar echo and the random-target spectrum response is also considered. Most of the previous waveform design researches assumed that the prior information of the target spectrum is completely known. However, in the actual scene, the real target spectrum cannot be accurately captured. To simulate this scenario, the real target spectrum was assumed to be within an uncertainty range where the upper and lower bounds are known. Then, the SINR- and MI-based maximin robust waveforms were designed, which could optimize the performance under the most unfavorable conditions. The simulation results show that the designed optimal waveforms based on these two criteria are different, which provides useful guidance for waveform energy allocation in different transmission tasks. However, under the constraint of limited energy, we also found that the performance improvement of SINR or MI in the worst case for single targets is less significant than that of multiple targets.

Keywords: cognitive radar; mutual information (MI); signal-to-interference-plus-noise ratio (SINR); waveform design.