Here, the effects of a newly designed ferroelectric oxide synthesized by solid reaction, barium strontium titanate [BST (85/15)] (Ba0.85Sr0.15TiO3), on the carpet shell clam Ruditapes decussatus were investigated. These clams were exposed to four concentrations of BST (85/15) nanoparticles (0.001, 0.01, 0.1, and 1 mg.L-1), and BST (85/15) was absorbed by R. decussatus in an exposure intensity-dependent manner. Measurements of clearance rate and biomarkers confirmed that the nanoparticles significantly affected the health of clams in an organ-dependent manner. Interestingly, BST (85/15) nanoparticles stimulated acetylcholinesterase (AChE) activity in the clams, suggesting their usefulness as antagonists of AChE inhibiting pollutants. These findings demonstrate the suitability of R. decussatus as a test organism to provide a framework for understanding the toxicological effects of these newly designed ferroelectrics. Moreover, concentrations of BST (85/15) < 0.1 mg.L-1 could be good alternatives to lead-based ferroelectric oxides and could be sustainable tools for use in electronic applications.
Keywords: Barium strontium titanate; Biochemical biomarkers; Clearance rate; Ferroelectric oxide; Ruditapes decussatus.
Copyright © 2020 Elsevier Ltd. All rights reserved.