Purpose: To determine whether awake EEG criteria can differentiate epileptic encephalopathy with continuous spike and waves during sleep (EE-CSWS) at the time of cognitive regression from typical, self-limited focal epilepsy (SFE).
Methods: This retrospective case-control study was based on the analysis of awake EEGs and included 15 patients with EE-CSWS and 15 age-matched and sex-matched patients with typical SFE. The EEGs were anonymised and scored by four independent readers. The following qualitative and quantitative EEG indices were analysed: slow-wave index (SLWI), spike-wave index (SWI), spike-wave frequency (SWF), long spike-wave clusters (CLSW) and EEG score (between grades 0 and 4). Sensitivity and specificity were assessed using receiver operating characteristic (ROC) curves and their reproducibility with a kappa test.
Results: Based on a highly sensitive cut-off, EE-CSWS patients were 8.4 times more likely than those with SFE to have an SLWI > 6%, 15 times more likely to have an SWI > 10 % and six times more likely to have a CLSW of ≥ 1 s. There was substantial agreement between readers (with kappa values of 0.64, 0.69 and 0.67). EE-CSWS patients were 13 times more likely to have an SWF of > 11 % and 149 times more likely to have an EEG score of ≥ 3 than typical SFE patients. Agreement about these ratings was almost perfect (kappa 0.91 and 0.86).
Conclusion: An EEG score of ≥ 3 on a 20-min awake EEG differentiates typical SFE from EE-CSWS at the time of cognitive regression, with good reliability across readers with different levels of expertise.
Keywords: Continuous spike and waves during sleep (CSWS); EEG score; EEG wakefulness; Electrical status epilepticus during sleep (ESES); Epilepsy with centro-temporal spikes (ECTS); Self-limited focal epilepsy (SFE).
Copyright © 2020 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.