Corneal Dystrophy in Dutch Belted Rabbits as a Possible Model of Thiel-Behnke Subtype of Epithelial-Stromal TGFβ-Induced Corneal Dystrophy

Toxicol Pathol. 2021 Apr;49(3):555-568. doi: 10.1177/0192623320968092. Epub 2020 Dec 8.

Abstract

The International Committee for Classification of Corneal Dystrophies (IC3D) categorized corneal dystrophies in humans using anatomic, genotypic, and clinicopathologic phenotypic features. Relative to the IC3D classification, a review of the veterinary literature confirmed that corneal dystrophy is imprecisely applied to any corneal opacity and to multiple poorly characterized histologic abnormalities of the cornea in animals. True corneal dystrophy occurs in mice with targeted mutations and spontaneously in pet dogs and cats and in Dutch belted (DB) rabbits, but these instances lack complete phenotyping or genotyping. Corneal dystrophy in DB rabbits can be an important confounding finding in ocular toxicology studies but has only been described once. Therefore, the ophthalmology and pathology of corneal dystrophy in 13 DB rabbits were characterized to determine whether the findings were consistent with or a possible model of any corneal dystrophy subtypes in humans. Slit lamp and optical coherence tomography (OCT) imaging were used to characterize corneal dystrophy over 4 months in young DB rabbits. The hyperechoic OCT changes correlated with light microscopic findings in the anterior stroma, consisting of highly disordered collagen fibers and enlarged keratocytes. Histochemical stains did not reveal abnormal deposits. Small clusters of 8 to 16 nm diameter curly fibers identified by transmission electron microscopy were consistent with Thiel-Behnke (TBCD) subtype of epithelial-stromal transforming growth factor β-induced dystrophies. Sporadic corneal dystrophy in DB rabbits appears to be a potential animal model of TBCD, but genotypic characterization will be required to confirm this categorization.

Keywords: comparative pathology; cornea opacity; corneal dystrophies; epithelial-stromal TGFBI dystrophy; laboratory rabbits; optical coherence tomography; spontaneous pathology.

Publication types

  • Review

MeSH terms

  • Animals
  • Cornea
  • Corneal Dystrophies, Hereditary* / genetics
  • Mice
  • Rabbits
  • Tomography, Optical Coherence