Determination of the microbial communities of Guizhou Suantang, a traditional Chinese fermented sour soup, and correlation between the identified microorganisms and volatile compounds

Food Res Int. 2020 Dec;138(Pt B):109820. doi: 10.1016/j.foodres.2020.109820. Epub 2020 Oct 20.

Abstract

Guizhou Suantang (GZST), a type of sour soup, is a traditional fermented food that can be classified into Hong Suantang (HST) and Bai Suantang (BST). GZST possesses unique flavors arising from various microbiota in fermentation ecosystems. However, the association between these microbiota and flavors remains poorly understood. Accordingly, this study analyzed the volatile components and microbial communities of GZST via headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry and high-throughput 16S rRNA and internal transcribed spacer sequencing techniques. Results showed that 133 compounds, including alcohols, esters, phenols, hydrocarbons, ketones, aldehydes, nitriles, acids, and sulfides, were identified from GZST. Moreover, principal component analysis found significant variances in the composition of volatile compounds among different samples. The bacterial genus level indicated that all GZST samples were dominated by Lactobacillus. At the fungal genus level, BST was dominated by Pichia, Debaryomyces, Mortierella, unclassified, Meyerozyma, and Dipodascus. Meanwhile, HST was dominated by Pichia, Candida, Kazachstania, Debaryomyces, Archaeorhizomyces, and Verticillium. The potential correlations between microbiota and volatile components were also explored through bidirectional orthogonal partial least squares-based correlation analysis. Nine bacterial genera and eight fungal taxa were identified as functional core microbiota for flavor production on the basis of their dominance and functionality in the microbial community. In addition, excessive Lactobacillus inhibited the formation of certain flavor substances. These findings provided basic data for the isolation, screening, and fermentation regulation of functional microorganisms in GZST. The information provided in this study is valuable for the development of effective strategies for selecting beneficial bacterial and fungal strains to improve the quality of GZST.

Keywords: Correlation analysis; Guizhou Suantang; Illumina MiSeq sequencing; Microbial diversity; Spontaneous fermentation; Volatile compounds.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • China
  • Fungi / genetics
  • Microbiota*
  • RNA, Ribosomal, 16S / genetics
  • Volatile Organic Compounds*

Substances

  • RNA, Ribosomal, 16S
  • Volatile Organic Compounds