β-lactam antibiotics have long been the mainstay for the treatment of bacterial infections. New Delhi metallo-β-lactamase 1 (NDM-1) is able to hydrolyze nearly all β-lactam antibiotics and even clinically used serine-β-lactamase inhibitors. The wide and rapid spreading of NDM-1 gene among pathogenic bacteria has attracted extensive attention, therefore high potency NDM-1 inhibitors are urgently needed. Here we report a series of structure-guided design of D-captopril derivatives that can inhibit the activity of NDM-1 in vitro and at cellular levels. Structural comparison indicates the mechanisms of inhibition enhancement and provides insights for further inhibitor optimization.
Keywords: Antibiotic resistance; D-captopril derivatives; Drug discovery; Metallo-β-lactamase inhibitors; Metallo-β-lactamases (MBLs); Thiol compounds.
Copyright © 2020 Elsevier Ltd. All rights reserved.