Hydrogen-Bond Dynamics and Energetics of Biological Water

Chempluschem. 2020 Dec;85(12):2657-2665. doi: 10.1002/cplu.202000744.


Water molecules in the immediate vicinity of biomacromolecules and biomimetic organized assemblies often exhibit a markedly distinct behavior from that of their bulk counterparts. The overall sluggish behavior of biological water substantially affects the stability and integrity of biomolecules, as well as the successful execution of various crucial water-mediated biochemical phenomena. In this Minireview, insights are provided into the features of truncated hydrogen-bond networks that grant biological water its unique characteristics. In particular, experimental results and theoretical investigations, based on chemical kinetics, are presented that have shed light on the dynamics and energetics governing such characteristics. It is emphasized how such details help us to understand the energetics of biological water, an aspect relatively less explored than its dynamics. For instance, when biological water at hydrophilic or charged protein surfaces was explored, the free energy of H-bond breakage was found to be of the order of 0.4 kcal mol-1 higher than that of bulk water.

Keywords: H-bond dynamics; biological water; excited-state proton transfer; protein hydration; solvation dynamics.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Energy Metabolism
  • Hydrogen Bonding
  • Thermodynamics*
  • Water / chemistry
  • Water / metabolism*


  • Water