Machine-learning-driven biomarker discovery for the discrimination between allergic and irritant contact dermatitis
- PMID: 33318199
- PMCID: PMC7776829
- DOI: 10.1073/pnas.2009192117
Machine-learning-driven biomarker discovery for the discrimination between allergic and irritant contact dermatitis
Abstract
Contact dermatitis tremendously impacts the quality of life of suffering patients. Currently, diagnostic regimes rely on allergy testing, exposure specification, and follow-up visits; however, distinguishing the clinical phenotype of irritant and allergic contact dermatitis remains challenging. Employing integrative transcriptomic analysis and machine-learning approaches, we aimed to decipher disease-related signature genes to find suitable sets of biomarkers. A total of 89 positive patch-test reaction biopsies against four contact allergens and two irritants were analyzed via microarray. Coexpression network analysis and Random Forest classification were used to discover potential biomarkers and selected biomarker models were validated in an independent patient group. Differential gene-expression analysis identified major gene-expression changes depending on the stimulus. Random Forest classification identified CD47, BATF, FASLG, RGS16, SYNPO, SELE, PTPN7, WARS, PRC1, EXO1, RRM2, PBK, RAD54L, KIFC1, SPC25, PKMYT, HISTH1A, TPX2, DLGAP5, TPX2, CH25H, and IL37 as potential biomarkers to distinguish allergic and irritant contact dermatitis in human skin. Validation experiments and prediction performances on external testing datasets demonstrated potential applicability of the identified biomarker models in the clinic. Capitalizing on this knowledge, novel diagnostic tools can be developed to guide clinical diagnosis of contact allergies.
Keywords: allergic contact dermatitis; artificial intelligence; biomarker; irritant contact dermatitis; machine learning.
Copyright © 2020 the Author(s). Published by PNAS.
Conflict of interest statement
The authors declare no competing interest.
Figures
Similar articles
-
Unique molecular signatures typify skin inflammation induced by chemical allergens and irritants.Allergy. 2021 Dec;76(12):3697-3712. doi: 10.1111/all.14989. Epub 2021 Jul 14. Allergy. 2021. PMID: 34174113
-
Thermography: High sensitivity and specificity diagnosing contact dermatitis in patch testing.Allergol Int. 2019 Apr;68(2):254-258. doi: 10.1016/j.alit.2018.12.001. Epub 2018 Dec 29. Allergol Int. 2019. PMID: 30598404
-
Mystery of the disappearing allergen: published allergens rarely seen again.Cutan Ocul Toxicol. 2008;27(1):15-9. doi: 10.1080/15569520701856757. Cutan Ocul Toxicol. 2008. PMID: 18330830
-
Allergic Contact Dermatitis.Immunol Allergy Clin North Am. 2017 Feb;37(1):141-152. doi: 10.1016/j.iac.2016.08.014. Immunol Allergy Clin North Am. 2017. PMID: 27886903 Review.
-
Contact allergy: an update.G Ital Dermatol Venereol. 2018 Jun;153(3):419-428. doi: 10.23736/S0392-0488.17.05844-8. Epub 2017 Dec 1. G Ital Dermatol Venereol. 2018. PMID: 29199804 Review.
Cited by
-
Status and trends of RGS16 based on data visualization analysis: A review.Medicine (Baltimore). 2024 Feb 16;103(7):e36981. doi: 10.1097/MD.0000000000036981. Medicine (Baltimore). 2024. PMID: 38363937 Free PMC article. Review.
-
Metabolomics and machine learning approaches for diagnostic and prognostic biomarkers screening in sepsis.BMC Anesthesiol. 2023 Nov 9;23(1):367. doi: 10.1186/s12871-023-02317-4. BMC Anesthesiol. 2023. PMID: 37946144 Free PMC article. Clinical Trial.
-
Involvement of CCL2 and CH25H Genes and TNF signaling pathways in mast cell activation and pathogenesis of chronic spontaneous urticaria.Front Immunol. 2023 Aug 14;14:1247432. doi: 10.3389/fimmu.2023.1247432. eCollection 2023. Front Immunol. 2023. PMID: 37646031 Free PMC article.
-
Using Machine Learning Methods to Study Colorectal Cancer Tumor Micro-Environment and Its Biomarkers.Int J Mol Sci. 2023 Jul 6;24(13):11133. doi: 10.3390/ijms241311133. Int J Mol Sci. 2023. PMID: 37446311 Free PMC article.
-
Wearable chemical sensors for biomarker discovery in the omics era.Nat Rev Chem. 2022 Dec;6(12):899-915. doi: 10.1038/s41570-022-00439-w. Epub 2022 Nov 15. Nat Rev Chem. 2022. PMID: 37117704 Free PMC article. Review.
References
-
- Keegel T., Moyle M., Dharmage S., Frowen K., Nixon R., The epidemiology of occupational contact dermatitis (1990-2007): A systematic review. Int. J. Dermatol. 48, 571–578 (2009). - PubMed
-
- Diepgen T. L., et al. , Prevalence of contact allergy in the general population in different European regions. Br. J. Dermatol. 174, 319–329 (2016). - PubMed
-
- Carøe T. K., Ebbehøj N. E., Bonde J. P., Agner T., Occupational hand eczema and/or contact urticaria: Factors associated with change of profession or not remaining in the workforce. Contact Dermat. 78, 55–63 (2018). - PubMed
-
- Moberg C., Alderling M., Meding B., Hand eczema and quality of life: A population-based study. Br. J. Dermatol. 161, 397–403 (2009). - PubMed
-
- Tan C. H., Rasool S., Johnston G. A., Contact dermatitis: Allergic and irritant. Clin. Dermatol. 32, 116–124 (2014). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
